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Models of the perceived distance between pairs of pitch collections are a core
component of broader models of music cognition. Numerous distance measures
have been proposed, including voice-leading [1], psychoacoustic [2–4], and pitch
and interval class distances [5]; but, so far, there has been no attempt to bind
these different measures into a single mathematical or conceptual framework,
nor to incorporate the uncertain or probabilistic nature of pitch perception.
This paper embeds pitch collections in expectation tensors and shows how

metrics between such tensors can model their perceived dissimilarity. Expec-
tation tensors indicate the expected number of tones, ordered pairs of tones,
ordered triples of tones, etc., that are heard as having any given pitch, dyad of
pitches, triad of pitches, etc.. The pitches can be either absolute or relative (in
which case the tensors are invariant with respect to transposition). Examples
are given to show how the metrics accord with musical intuition.
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1. Introduction

A pitch collection may comprise the pitches of tones in a chord, a scale, a tuning, or the
virtual and spectral pitches heard in response to complex tones or chords. Modelling the
perceived distance (the similarity or dissimilarity) between pairs of pitch collections has
a number of important applications in music analysis and composition, in modelling of
musical cognition, and in the design of musical tunings. For example, voice-leading dis-
tances model the overall distance between two chords as a function of the pitch distance
moved by each voice (see [1] for a survey); musical set theory considers the similarities
between the interval (or triad, tetrad, etc.) contents of pitch collections (see [5] for a sur-
vey); psychoacoustic models of chordal distance [2–4] treat tones or chords as collections
of virtual and spectral pitches [6, 7] to determine their affinity; tuning theory requires
measures that can determine the distance between scale tunings and, notably, the extent
to which different scale tunings can approximate privileged tunings of intervals or chords
(e.g., just intonation intervals with frequency ratios such as 3/2 and 5/4, or chords with
frequency ratios such as 4:5:6:7).
This paper presents a novel family of embeddings called expectation tensors (a tensor

is also known as a multi-way array), and associated metrics, that can be applied to the
above areas. As discussed in sections 3 and 4, expectation tensors model the uncertainties
of pitch perception by “smearing” each pitch over a range of possible values, and the
width of the smearing can be related to experimentally determined frequency difference
limens [8]. The tensors can embed either absolute or relative pitches (denoted absolute
and relative expectation tensors, respectively): in the latter case, embeddings of pitch
collections that differ only by transposition have zero distance; a useful feature that
relates similarity to structure. Furthermore, tensors of any order (dimensionality) can be
formed, allowing the embeddings to reflect the (absolute or relative) pitch, dyad, triad,
and so forth, content of the pitch collection.
The distance between expectation tensors of the same order can be determined with

any standard metric (such as Lp or cosine). A discussion of how such metrics can be
applied and interpreted is found in section 5. In section 6, a number of applications of
the metrics are given, and it is shown how distances between different pairs of embeddings
(absolute and relative of differing orders) may be combined to produce more informative
models of the similarity of pitch collections.

To avoid confusion, it is worth making some definitions explicit. A tone is defined as a
periodic sound stimulus that may be characterised by its fundamental frequency f (or by
log f); a complex tone may contain many such periodic stimuli. A pitch is the perceptual
response (auditory sensation) that is linearly related to the log frequency of a tone. A
pitch-class is an equivalence class of all pitches that are periods apart—a period being a
pitch difference over which pitch equivalence is perceived to exist (typically the octave).
A generalised definition that extends the methods to other domains can be found in
section 7.
The probability of hearing the pitch of a tone is, following Parncutt [2], denoted

salience. Two assumptions are made to simplify the analysis: any given tone can be
heard as having no more than one pitch (or pitch-class) and the hearing (or not) of a
tone does not affect the chance of hearing another tone. Thus a single note played by
an instrument can still be treated as a single perceptual entity or as a set of virtual
or spectral “tones”. Pitch collections are treated as multisets—duplication of the same
pitch is meaningful because two different tones may induce the same pitch while both
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remain discriminable.
This paper makes use of tensors and tensor notation: to aid readers unfamiliar with

tensors, a brief introduction is provided in Appendix B in the online supplementary to
this article. In the main text, element-level summations have also been provided to aid
comprehension.

2. Category domain embeddings

Category domain embeddings—such as the familiar pitch (class) vector—contain elements
whose values indicate pitches (typically in semitones). Standard metrics between two such
vectors are based only on the pitch distances between elements in matching positions in
the two vectors. For this reason, such pitch metrics are meaningful only when each tone
in one pitch collection has a privileged relationship with a unique tone in another pitch
collection; for example, when each element (index value) represents a different category
such as voice (bass, tenor, alto, soprano), or scale degree, or even metrical or ordinal
position in a melody. This can occur only when there are the same number of categories
in each tone collection (i.e., both pitch vectors have the same dimension).
Applying metrics to category domain vectors is a well-established technique; for exam-

ple, Chalmers [9] measures the distances between differently tuned tetrachords using a
variety of metrics including Euclidean L2, taxicab L1, and max-value L∞ (thereby treat-
ing tetrachord scale-degrees as categories), and the use of various metrics to measure
voice-leading distance are discussed by Tymoczko [1].

To be concrete, a pitch vector xpi ∈ R
d contains elements xpii indexed by i ∈ N : 1 ≤

i ≤ d, where d ∈ N is the number of tones. The index i indicates the tone category and
the value of the element xpii indicates pitch. A typical example is a logarithmic function
of frequency

xpii = q logb

(
fi
fref

)

, (1)

where 0 < b ∈ R is the frequency ratio of the period (typically the octave, so b = 2),
q ∈ N determines the number of pitch units that make up the period (typically q = 12
semitones or q = 1200 cents), fi ∈ R is the frequency of tone i, and fref ∈ R is the
frequency given a pitch value of zero (typically C−1, which is 69 semitones below concert
A, so fref = 440 × 2−69/12 ≈ 8.176 Hz). With these constants, a four-voice major triad
in close position with its root on middle C is (60, 64, 67, 72), which is also the MIDI note
numbers for a C-major chord.
A pitch class vector or pc-vector,

xpci = xpii (mod q), (2)

is invariant with respect to the period of the pitches since 0 ≤ xpci ≤ q − 1. This makes
it useful for concisely describing periodic pitch collections, such as scales or tunings that
repeat every octave. The variable fref specifies which pitch class has a value of 0 (in a
tonal context, it may be clearest to make it equal to the pitch of the root, or tonic).
For example, a major triad may be notated (0, 4, 7) or (1, 5, 8), or more generally as
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Table 1. These pc-vectors represent several musical scales with b = 2
(the octave) and q = 1200 cents: 12 equal division of the octave (12-
edo), the major scale in 12-edo, 10-edo, and a just intonation major
scale.

12-edo (0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100) R
12

Maj-12 (0, 200, 400, 500, 700, 900, 1100) R
7

10-edo (0, 120, 240, 360, 480, 600, 720, 840, 960, 1080) R
10

Maj-JI (0, 204, 386, 498, 702, 884, 1088) R
7

(x, 4 + x, 7 + x) mod q. Table 1 shows some musical scales represented as pc-vectors.
The pc-vector may have an associated weighting vector,

xw ∈ R
d, (3)

which contains elements 0 ≤ xwi
≤ 1. This can be used to represent amplitude, loudness,

salience, and so forth. This paper assumes the weighting vector denotes salience, the
probability of hearing a tone. For example, if four tones sound the pitch classes (0, 3, 3, 7)
and have an associated weighting vector (.9, .6, .6, .9), there is probability of .9 the first
tone will be heard (in ten trials, it is expected that that tone will be heard nine times);
there is a probability of .6 the second tone will be heard (in ten trials, it is expected that
that tone will be heard six times).
Category domain embeddings, and metrics reliant upon them, are unsuitable when

the pitches cannot be uniquely categorised. For example, when modelling the distance
between the large sets of spectral or virtual pitches heard in response to complex tones
or chords (see example 6.2), there is no unique way to reasonably align each spectral
pitch of one complex tone or chord with each spectral pitch of another [10] and, even
if there were, it is not realistic to expect humans to track the “movements” of such a
multitude of pitches.
A simpler example is provided by the scales in table 1, where the categories are the

indices of the scale elements. From a musical perspective, it is clear that some such
tunings can be thought of as closer than others. For instance, a piece written in Maj-JI
can be played in a subset of 12-edo (such as Maj-12) without undue strain, yet may not
be particularly easy to perform when the pitches are translated to a subset of 10-edo.
Thus it is desirable to have a metric that allows a statement such as “Maj-JI is closer to
12-edo than to 10-edo.” (JI is an abbreviation of just intonation, edo is an abbreviation
of equal divisions of the octave).
When two pc-vectors have the same number of elements, any reasonable metric can

be used to describe the distance between them; for example, the distance between Maj-
12 and Maj-JI can be easily calculated because they both contain seven pitch classes.
However, when two pitch collections have different cardinalities, there is no obvious way
to define an effective metric since this would require a direct comparison of elements in
R
n with elements in R

m for n '= m.1 One strategy is to identify subsets of the elements

1In such a case, the Hausdorff metric could be used. This metric is noteworthy because it can
be used for sets with differing cardinalities. But, because the distance between any two sets is
characterised by the distance between just two points in these sets, it is inadequately sensitive as
a model for perceived distance. For example, the Hausdorff distances between C-E-G and D-F!-A
and between C-E-G and C-E-A are identical.
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of the pitch collections and then try to calculate a distance in this reduced space. For
instance, one might attempt to calculate the distance between Maj-JI and 12-edo by
first identifying the seven nearest elements of the 12-edo scale, and then calculating the
distance in R

7. Besides the obvious problems with identifying corresponding tones in
ambiguous situations, the triangle inequality will fail in such schemes. For example, let
pitch collection x be 12-edo, pitch collection y be any seven note subset drawn from
12-edo (such as the major scale), and pitch collection z be a different seven note subset
of 12-edo. The identification of pitches is clear since y and z are subsets of x. The
distances d

(
x,y

)
and d

(
x, z

)
are zero under any reasonable metric since y ⊂ x and

z ⊂ x, yet d
(
y, z

)
is non-zero because the pitch classes in the two scales are not the

same. Hence the triangle inequality d
(
y, z

)
≤ d

(
y,x

)
+ d

(
x, z

)
is violated. Analogous

counter-examples can be constructed whenever n '= m.

3. Pitch domain embeddings

A way to compare pitch collections with differing numbers of elements is to use a pitch
domain embedding where the index represents pitch and the value represents the prob-
ability of a pitch being heard, or the expected number of tones heard at that pitch.
Because the cardinality of the pitch domain embedding is independent of the cardinality
of the pc-vector it is derived from, such embeddings (and metrics reliant upon them) are
able to compare pitch collections with different numbers of tones such as the spectral and
virtual pitches heard in response to a complex tone or chord, or scales and their tunings.
The following examples are shown as transformations of pc-vectors (2), but they can also
be given in terms of pitch vectors (1).
The d elements of a pc-vector xpc can be transformed into d characteristic functions

weighted by the salience vector xw. The d row vectors are then arranged into a d × q
matrix to allow the saliences of the tones to be individually convolved and appropriately
summed. Formally, the elements of the pitch class salience matrix Xpcs ∈ R

d×q are given
by

xpcsi,j = xwi
δ(j −

[
xpci

]
), (4)

where [x] rounds x to the nearest integer and δ(k) is the Kronecker delta function that
is 1 when k = 0 and 0 for all k '= 0.

Example 3.1 Given q = 12, xpc = (0, 3, 3, 7) (i.e., a close position minor chord with a
doubled third), and xw = (1, .6, .6, 1), (4) gives the pitch class salience matrix

Xpcs =

(
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 .6 0 0 0 0 0 0 0 0
0 0 0 .6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

)

.

Pitch values in the pc-vector are rounded to the nearest pitch unit (whose size is
determined by q and b) when embedded in the pitch domain. Using a low value of q
(like 12 in example 3.1) makes such pitch domain embeddings insensitive to the small
changes in tuning that are important when exploring the distances between differently
tuned scales, or between collections of virtual and spectral pitches. Naively embedding
into a more finely grained pitch domain (such as q = 1200) is problematic. For example,
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Figure 1. Pitch domain embeddings of two tones—one with a pitch of 400 cents, the other with
a pitch of 401 cents. On the left, no smoothing is applied, so their distance under any standard
metric is maximal; on the right, Gaussian smoothing (standard deviation of 3 cents) is applied,
so their distance under any standard metric is small.

under any standard metric, the distance between a tone with a pitch of 400 cents and a
tone with a pitch of 401 cents is maximally large (i.e., there is no pair of pitches that will
produce a greater distance, see the left side of figure 1). This is counter to perception
since it is likely that two such tones will be heard as having pitches that are (almost)
the same.
The solution is to smooth each spike over a range of pitches to account for perceptual

inaccuracies and uncertainties. Indeed, a central tenet of signal detection theory [11] is
that a stimulus produces an internal (perceptual) response that may be characterised as
consisting of both signal plus noise. The noise component is typically assumed to have a
Gaussian distribution, so the internal response to a specific frequency may be modelled
as a Gaussian centred on that frequency [12]. It is this noise component that makes the
frequency difference limen greater than zero: when two tones of similar, but non-identical,
frequency are played successively, the listener may, incorrectly, hear them as having the
same pitch. The right side of figure 1, for instance, shows the effect of smoothing with
a Gaussian kernel with a standard deviation of 3 cents. See Appendix A in the online
supplementary to this article for a detailed discussion of this parameter.
The smoothing is achieved by convolving each row vector in the pitch class salience

matrix Xpcs with a probability mass function. The pitch class response matrix X ∈ R
d×q

is given by

xi = xpcsi
∗ p (5)

where xi is the ith row of X, xpcsi
is the ith row of Xpcs, p is a discrete probability

mass function (i.e., pk ≥ 0 and
∑

pk = 1), and ∗ is convolution (circular over the period
q when a pc-vector is used). The result of (5) is that each Kronecker delta spike in Xpcs

is smeared by the shape of the probability mass function and scaled so the sum of all its
elements is the salience of the tone (as shown in figure 1).

Example 3.2 Let the probability mass function be triangular with a full width at half
maximum of two semitones; this is substantially less accurate than human pitch percep-
tion and a much finer pitch granulation (like cents) would ordinarily be required, but it
illustrates the mathematics. Applying this to the pitch class salience matrix of example
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3.1 gives the pitch class response matrix

X =

(
.5 .25 0 0 0 0 0 0 0 0 0 .25
0 0 .15 .3 .15 0 0 0 0 0 0 0
0 0 .15 .3 .15 0 0 0 0 0 0 0
0 0 0 0 0 0 .25 .5 .25 0 0 0

)

.

4. Expectation tensors

The values in the pitch class response matrix represent probabilities; this means it is
possible to derive two useful types of embeddings: (a) expectation tensors indicate the
expected number of tones, ordered pairs of tones, ordered triples of tones, and so forth,
that will be heard as having any given pitch, dyad of pitches, triad of pitches, and so
forth; and (b) salience tensors indicate the salience of any given pitch, dyad of pitches,
triad of pitches, and so forth.
Example 3.2 will help to clarify this distinction: The expected number of tones heard

at pitch class 3 is 0.6 (the sum of elements with j = 3); this does not mean it is possible
to hear a non-integer number of tones, it means that over a large number of “trials” an
average of 0.6 tones will be heard at pitch class 3 (e.g., given one hundred trials, listeners
might hear two tones at pitch class 3 in nine trials, one tone at pitch 3 in forty two trials,
and hear no tones at pitch 3 in forty nine trials). The salience (probability of hearing) a
pitch class of 3 is 1−((1− 0)(1− .3)(1− .3)(1− 0)) = .51 so, given one hundred trials, we
expect listeners to hear pitch class 3 a total of fifty-one times (regardless of the number
of tones heard at that pitch). (The use of an element’s value to indicate the probability of
hearing an interval was first suggested by Lewin in his discussion of normalised interval
functions [13].) This paper focuses on expectation tensors.
Expectation tensors may be absolute or relative: absolute expectation tensors, denoted

Xe, distinguish pitch collections that differ by transposition (e.g., the scales C major and

D major), while relative expectation tensors, denoted X̂e, do not.
Expectation tensors enable different pitch collections to be compared according to

their monad (single pitch), dyad, triad, tetrad, and so forth, content. To see why such
comparisons are significant, consider a simple example using major and minor triads
(0, 4, 7) and (0, 3, 7) with q = 12. These contain the same set of intervals (and hence they
have zero dyadic distance) but these intervals are arranged in different ways (and hence
have non-zero triadic distance). Thus the two types of embedding may capture the way
major and minor triads are heard to be simultaneously similar and different. matlab and
Mathematica routines have been developed to calculate the tensors discussed below; they
can be downloaded from http://eceserv0.ece.wisc.edu/~sethares/pitchmetrics.

html.

4.1. Monad expectation tensors

The absolute monad expectation vector X
(1)
e indicates the expected number of tones

that will be heard as corresponding to each possible pitch (class) j. It is useful for
comparing the similarity of pitch collections where absolute pitch is meaningful; for
example, comparing the spectral or virtual pitches produced by two complex tones or

chords in order to determine their affinity or fit (see example 6.2). The elements of X
(1)
e
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are derived from the elements, xi,j , of the pitch class response matrix by

xej =

d∑

i=1

xi,j , (6)

which is the column sum of the pitch class response matrix X,

X
(1)
e = 1′dX (7)

where 1d is a d-dimensional column vector of ones, and ′ is the

transpose operator. Applied to example 3.2, (7) produces X
(1)
e =

(0.5, 0.25, 0.3, 0.6, 0.3, 0, 0.25, 0.5, 0.25, 0, 0, 0.25).
When there is no probabilistic smoothing, and every tone has a salience of 1, the

monad expectation vector is equivalent to a multiplicity function of the rounded pitch

(class) vector; that is, xej =
d∑

i=1
δ(j −

[
xpci

]
). For example, given the pitch class vec-

tor for a four-voice minor triad with a doubled third (0, 3, 3, 7), a weighting vector
of (1, 1, 1, 1), and no smoothing, the resulting absolute monad expectation vector is

X
(1)
e = (1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0).

The relative monad expectation scalar X̂
(0)

e gives the expected overall number of tones

that will be heard (at any pitch). It can be calculated by summing X
(1)
e over j or, more

straightforwardly, as the sum of the elements of the weighting vector

X̂
(0)

e =

q−1
∑

j=0

xej =

d∑

i=1

xwi
= 1′dX1q (8)

where 1q is a q-dimensional column vector of ones. Applied to example 3.2, (8) gives

X̂
(0)

e = 3.2.

4.2. Dyad expectation tensors

The absolute dyad expectation matrix X
(2)
e indicates the expected number of tone pairs

that will be heard as corresponding to any given dyad of absolute pitches. It is useful
for comparing the absolute dyadic structures of two pitch collections; for example, to
compare scales according to the number of dyads they share—the scales C major and
F major contain many common dyads and so have a small distance (.155), the scales C
major and F! major contain just one common dyad {B, F} and so have a large distance
(.782). (These distances are calculated with a cosine metric (20) and q = 12.)
For dyad tensors with two tones indexed by 1 and 2, there are two ordered pairs (1, 2)

and (2, 1). The probability of hearing tone 1 as having pitch j and tone 2 as having
pitch k is given by x1,jx2,k. Similarly, the probability of hearing tone 2 as having pitch j
and tone 1 as having pitch k is given by x2,jx1,k. Given two tones, the expected number
of ordered tone pairs that will be heard as having pitches j and k is, therefore, given
by x1,jx2,k + x2,jx1,k. Similarly, given three tones, there are six ordered pairs, and the
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expected number of ordered tone pairs heard as having pitches j and k is given by the
sum of the six probabilities.

Generalising for any number of tones, the absolute dyad expectation tensor, X
(2)
e ∈

R
q×q, contains elements

xej,k =
∑

(i1,i2)∈D2:
i1 '=i2

xi1,j xi2,k (9)

where D = {1, 2, . . . , d} and element indices j and k indicate the pitches j and k. The
element value indicates the expected number of ordered pairs of tones heard as having
those pitches.
Equation (9) requires O(d2) operations for each element. Using the tensor methods

described in Appendix C in the online supplementary to this article, this can be expressed
directly in terms of X, in a way that requires only O(d) operations per element,

X
(2)
e =

(
1′dX

)
⊗
(
1′dX

)
−
(
X′X

)
. (10)

For example, given the pitch class vector for a four-voice minor triad with a doubled third
(0, 3, 3, 7) and a weighting vector of (1, 1, 1, 1), the resulting absolute dyad expectation
matrix is

X
(2)
e =











0 0 0 2 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 2 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0











.

This example is indexed from top to bottom by j = 0, 1, . . . , 11, and from left to right
by k = 0, 1, . . . , 11. The first row shows there are two ordered pairs of tones containing
the dyad of pitches {0, 3} (ordered tone pairs (1, 2) and (1, 3)); and one ordered tone
pair comprising the dyad of pitches {0, 7} (tone pair (1, 4)). Similarly, row 4 shows there
are two ordered pairs containing the dyad of pitches {3, 0} (tone pairs (2, 1) and (3, 1));
two ordered tone pairs containing the dyad of pitches {3, 3} (tone pairs (2, 3) and (3, 2));
two ordered tone pairs containing the dyad of pitches {3, 7} (tone pairs (2, 4) and (3, 4)).
And so forth.

The relative dyad expectation vector X̂
(1)

e ∈ R
q indicates the expected number of tone

pairs that will be heard as corresponding to any given dyad of relative pitches (i.e.,
an interval). It is useful for comparing the intervallic structures of two or more pitch
collections regardless of transposition. For example, to compare the number of intervals
that two pitch collections have in common or to compare different pitch collections by the
number, and tuning accuracy, of a specific set of privileged intervals they each contain
(for a specific application, see example 6.4, which compares thousands of scale tunings
to a set of just intonation intervals).

The relative dyad expectation vector is given by applying circular row shifts to X
(2)
e ,
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so that k ,→ k + j (mod q), and then summing over j, that is,

x̂ek =
∑

j

xej,k+j
(11)

where k + j is taken modulo q when pitch class vectors are used. The index k indicates
an interval, of size k, with j. Assuming the independence of tone saliences, the values
are the expected number of ordered tone pairs heard as having that interval, regardless
of transposition.
When there is no probabilistic smoothing applied, and the salience of every tone

is 1, the relative dyad expectation vector simply gives the multiplicity of ordered
pairs of tones that correspond to any possible interval size. For instance, given the
pitch class vector for a four-voice minor triad with a doubled third (0, 3, 3, 7) and a

weighting vector of (1, 1, 1, 1), the resulting relative dyad expectation vector is X̂
(1)

e =
(2, 0, 0, 2, 2, 1, 0, 1, 2, 2, 0, 0). The elements of this vector show that this chord voicing con-
tains 2 ordered pairs of tones with sizes of zero semitones (tone pairs (2, 3) and (3, 2)),
no ordered pairs of tones with a size of one semitone, no ordered pairs of tones with a
size of two semitones, 2 ordered pairs of tones with sizes of three semitones (tone pairs
(1, 2) and (1, 3)), 2 ordered pairs of tones with sizes of four semitones (tone pairs (2, 4)
and (3, 4)), and so forth.
When there are no tones with the same pitch class (this is always the case, by definition,

when using a pitch class set rather than a multiset), the zeroth element of the unsmoothed
relative dyad expectation vector always has a value of 0. Because the values of all its
elements are symmetrical about the zeroth element, no information is lost by choosing
the subset

{
x̂ek : 1 ≤ k ≤ . q2/

}
and, when q is an even number, dividing the last element

by two (otherwise it is double-counted). When q = 12, this subset is identical to the 6-
element interval vector of atonal music theory [14]. The relative dyad expectation tensor
can, therefore, be thought of as a generalisation of a standard interval vector that can
deal meaningfully with doubled pitches and the uncertainties of pitch perception.

4.3. Triad expectation tensors

The absolute triad expectation tensor X
(3)
e indicates the expected number of ordered tone

triples that will be heard as corresponding to any given triad of absolute pitches. It is
useful for comparing the absolute triadic structures of two pitch collections; for example,
to compare two scales according to the number of triads they share—the scales C major
and F major have many triads in common (e.g., {C, E, G}, {C, D, E}, and {D, F, G}
are found in both scales) and so have a small distance (.170), the scales C major and F!
major have no triads in common—they share only two notes {B, F}—and so have the
maximal distance of 1. (These distances are calculated with the generalised cosine metric
(20) with q = 12.)
Given three tones indexed by 1, 2, and 3, there are six ordered triples (1, 2, 3), (2, 1, 3),

(2, 3, 1), (1, 3, 2), (3, 1, 2), (3, 2, 1); the probabilities of hearing each triple as having pitches
j, k and #, respectively, are x1,j x2,k x3,! , x2,j x1,k x3,! , x2,j x3,k x1,! , x1,j x3,k x2,! ,
x3,j x1,k x2,! , and x3,j x2,k x1,! . Given three tones, the expected number of ordered tone
triples heard as having pitches j, k, # is given by the sum of the above probabilities.
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Generalising for any number of tones, the absolute triad expectation tensor, X
(3)
e ∈

R
q×q×q contains elements

xej,k,! =
∑

(i1,i2,i3)∈D3:
i1 '=i2,i1 '=i3,i2 '=i3

xi1,j xi2,k xi3,! (12)

where D = {1, 2, . . . , d}. Element indices j, k, and # indicate the pitch (classes) j, k,
and #; assuming the independence of tone saliences, element value indicates the expected
number of ordered triples of tones heard as having those three pitches.
Equation (12) requires O(d3) operations for each element, but can be simplified to

O(d) by using the tensor methods of Appendix C in the online supplementary to this
article:

X
(3)
e =

(
1′dX

)
⊗
(
1′dX

)
⊗
(
1′dX

)
−
((

1′dX
)
⊗
(
X′X

))

〈1,2,3〉
(13)

−
((

1′dX
)
⊗
(
X′X

))

〈2,1,3〉
−
((

1′dX
)
⊗
(
X′X

))

〈3,1,2〉
+ 2

(
X′ 0X′ 0X′

)
• 1d.

Applying circular mode shifts to X
(3)
e , so that k ,→ k+j (mod q) and # ,→ #+j (mod q),

and then summing over j gives the relative triad expectation matrix X̂
(2)

e ∈ R
q×q with

elements x̂ek,! indexed by the interval class k, # ∈ [0, q − 1]; so

x̂ek,! =
∑

j

xej,k+j,!+j
(14)

where k + j and # + j are taken modulo q when used with pitch class vectors. Element
indices k and # indicate two intervals, of sizes k and #, with j (which together make a
triad). Assuming independence of tone saliences, the element values are the expected
number of ordered tone triples heard as corresponding to that triad of relative pitches.

X̂
(2)

e is useful for comparing the triadic structures of two or more pitch collections,
regardless of transposition. For example, to compare the number of triad types two
pitch collections have in common; or to compare pitch collections by the number, and
tuning accuracy, of a specific set of privileged triads they each contain (for a specific
application, see example 6.4, which compares thousands of scale tunings against a just
intonation triad).
For example, given the pitch class vector for a four-voice minor triad with a doubled

third (0, 3, 3, 7) and a weighting vector of (1, 1, 1, 1), the resulting relative triad expecta-
tion matrix is

X̂
(2)

e =











0 0 0 0 2 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 2 0 0 0 0
2 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 2 0 0 0
2 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0











.

This example is indexed from top to bottom by k = 0, 1, . . . , 11, and from left to right
by # = 0, 1, . . . , 11. The first row shows there are two ordered tone triples with the
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triadic structure {j, j+0, j+4} (tone triples (2, 3, 4) and (3, 2, 4)); and two ordered tone
triples with the triadic structure {j, j + 0, j + 7} (triples (2, 3, 1) and (3, 2, 1)). Row 4
shows there are two ordered tone triples containing the triadic structure {j, j + 3, j + 3}
(triples (1, 2, 3) and (1, 3, 2)); and two ordered tone triples with the triadic structure
{j, j + 3, j + 7} (triples (1, 2, 4) and (1, 3, 4)). And so forth.

4.4. r-ad expectation tensors

The definitions and techniques of the previous sections can be generalised to a tensor of

any order. An absolute r-ad expectation tensor, X
(r)
e ∈ R

qr , contains elements

xej1,j2,...,jr =
∑

(i1,...,ir)∈Dr:
in '=ip

r∏

m=1

xim,jm (15)

where D = {1, 2, . . . , d}. Element indices j1, j2, . . . , jr indicate the pitches j1, j2, . . . , jr;
assuming the independence of tone saliences, element value indicates the expected num-
ber of ordered r-tuples of tones heard as having those r pitches. As explained in Appendix
C in the online supplementary to this article, this can also be expressed directly in tensor
notation:

X
(r)
e =

((
1qr ⊗ Edr

)
◦X⊗r

〈r+1,1,r+2,2,...,...,r+r,r〉

)
r
• 1dr . (16)

Equations (15) and (16) are symbolically concise, but cumbersome to calculate since each

element of X
(r)
e requires O(dr) operations. Fortunately, this can be reduced to O(d) by

breaking (16) into subspaces, each of which can be simplified (this process is fully ex-
plained in in Appendix C in the online supplementary to this article). The computational
complexity can be further reduced by exploiting the sparsity of the tensors to calculate
only non-zero values; furthermore, due to their construction, the tensors are invariant
with respect to any transposition of their indices, so only non-duplicated elements need
to be calculated. To minimise memory requirements, the tensors can be stored in a sparse
format.
The absolute r-ad expectation tensors can be made invariant with respect to trans-

position by circularly shifting modes 2, 3, . . . , r of X
(r)
e so that jm ,→ jm + j1 (mod q)

(where m ∈ [2, r]) and then summing over j1. This creates an order-(r− 1) relative r-ad
expectation tensor with elements

x̂ej2,j3,...,jr =
∑

j1

xej1,j2+j1,...,jr+j1
∈ R

qr−1

. (17)

Element indices j2, . . . , jr indicate a set of r−1 intervals with j1 (which together make an
r-ad); assuming the independence of tone saliences, element value indicates the expected
number of ordered r-tuples of tones that are heard as corresponding to that r-ad of
relative pitches.
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5. Metrics

The distance between a pair of vectors or tensors can be calculated with any standard
metric. This section details two particular metrics (the Lp and the cosine) which are used
in the applications of section 6.
It is reasonable to model the perceived pitch distance between any two tones with

their absolute pitch difference (e.g., the pitch distance between tones with pitch values
of 64 and 60 semitones is 4 semitones). The Lp-metrics are calculated from absolute
differences so they provide a natural choice for calculating the overall distance between
pairs of category domain pitch vectors. When there are d different tones in each vector,
there are d different pitch differences; the value of p determines how these are totalled
(e.g., p = 1 gives the taxicab measure which simply adds the distances moved by the
different voices; p = 2 gives the Euclidean measure; p = ∞ gives the largest distance
moved by any voice). As discussed in section 2, the use of such metrics is a well-established
procedure [1, 9].
The metrics may be based on the intervals between pairs of pitch vectors in R

d:

dw(x,y) =

(
d∑

i=1

wi |xi − yi|
p

)1/p

(18)

where x and y may be two pitch vectors as in (1) or two pc-vectors as in (2), and the
weights wi may be sensibly chosen to be the product of the saliences wi = xwi

ywi
from

(3) [2]. The metrics may also treat the unordered pitch class intervals:

dc(x,y) =

(
d∑

i=1

wimin
k∈Z

|xi − yi − kq|p

)1/p

. (19)

Equation (18) provides a measure of pitch height distance while (19) provides a measure
of pitch class (or chroma) distance.

To calculate the distance between two expectation tensors X
(r)
e and Y

(r)
e ∈

R

r
︷ ︸︸ ︷

q × q × · · ·× q, the Lp-metrics can be applied in an entrywise fashion. The simplest
way to write this is to reshape the tensors into column vectors x and y ∈ R

qr which may
be applied in (18). It may also be convenient to normalise the resulting distance to the
interval [0, 1], in which case every element of x can be normalised by 1

2||X(r)
e ||p

and every

element of y can be normalised by 1
2||Y(r)

e ||p
.

The cosine metric between two vectors x and y ∈ R
d is

dcos(x,y) = 1−
x
′
y

√

(x′x)(y′y)
. (20)

This may be applied to pitch vectors or to pc-vectors and, like the Lp-metric, it may also
be applied to the expectation tensors in an entrywise fashion by reshaping the arrays
into column vectors.
The cosine distance between two vectors is equivalent to their uncentred correlation,

and the use of such metrics is an established procedure in music theory and cognition
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[15–17]. For expectation tensors, the meaning of the cosine distance is easier to discern
(and is a more obvious choice) than that of the Lp-metrics: It gives a normalised value
for the expected number of ways in which each different r-ad in one pitch collection can
be matched to a corresponding r-ad in another pitch collection. For example, consider
the absolute triad expectation tensors for the scales C major and D major, where each
tone has a salience of 1 and no probabilistic smoothing is applied. The numerator of the
division counts the number of triad matches: both contain the triad {G, A, B}, which
gives a count of 1; both contain the triad {A, C, E}, which increases the count to 2;
both contain the triad {A, B, E}, which gives a cumulative total of 3; and so on, for
all possible triads. The denominator of the division then normalises the value to the
interval [0, 1]. Similarly, for a relative triad expectation tensor, both C major and D
major contain three root-position major triads each, so there are a total of 9 ways they
can be matched; both contain one root-position diminished triad each, so there is 1 way
they can be matched, making a cumulative total of 10; and so on, for all possible relative
triads. The denominator of the division again normalises.
The final choice of metric can be made a priori (guided by theory, as above) or post-hoc

(as a free parameter chosen to fit empirical data).

6. Applications

This section provides some applications of the embeddings and metrics discussed in this
paper. The matlab routines used to calculate them can be downloaded from http:

//eceserv0.ece.wisc.edu/~sethares/pitchmetrics.html.

6.1. Tonal distances

The perceived overall pitch distance of two chords can be modelled as a linear combina-
tion of voice-leading distance and fundamental pitch distance: the first can be calculated
by applying metrics (18) and (19) directly to pitch vectors; the second by applying a
metric, such as cosine, to their absolute monad embeddings (when using unsmoothed
embeddings, this metric is closely related to Parncutt’s pitch commonality [2]). This
gives d + 3 free parameters whose values may be determined by experimental testing—
the d weights for each voice, the value of p used in the metric, and the parameters that
weight the two different distance measures.

Example 6.1 Voice-leading distance and fundamental pitch distance. This example il-
lustrates the difference between voice-leading distance and fundamental pitch distance.
Figure 2 shows the fundamental pitch distances (the lighter the colour, the greater the
distance) between a 12-edo reference major triad (with three voices) and all possible 12-
edo triads containing a perfect fifth. All possible root-position major and minor triads
lie on the central diagonal, some of which are labelled, and the spatial distance between
them indicates their Euclidean voice-leading distance.
Observe how there are local minima of fundamental pitch distance at those triads that

have common tones with the reference C-major triad (e.g., F-major and A$-major), and
that the greatest mimina occur at triads that have two common tones with the reference
C-major triad (e.g., c-minor, e-minor, and a-minor—which correspond to the Rieman-
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Figure 2. Fundamental pitch distances between a C-major reference triad and all possible 12-edo
triads that contain a perfect fifth. (Fundamental pitch distance is here calculated with a cosine
metric on absolute monad expectation vectors embedding the fundamental pitches of each triad’s
tones; three cents standard deviation Gaussian smoothing has been used.) The horizontal axis
shows the pitch distance from the reference triad’s root and fifth, the vertical axis shows the pitch
distance from the reference triad’s third, so the spatial distance between any two triads indicates
their Euclidean voice-leading distance. The greyscale indicates the fundamental pitch distance
from the reference triad (the lighter the colour, the greater the distance). Several common triads
are labelled, capital letters represent major chords and small letters are minor.

nian transformations P, L, and R). A linear combination of voice-leading distance and
fundamental pitch distance may, therefore, provide an effective model of the perceived
overall pitch distance of different chords [3].

Any complex tone or chord produces a large number of spectral and virtual pitch
responses [6, 7], which suggests that the distances between collections of spectral or
virtual pitches may provide a model for the perceived affinity of tones or chords [2, 3].
There are so many of these pitches, it is unlikely they can be mentally categorised;
the appropriate distance function is, therefore, a metric on pitch domain, not category
domain, embeddings. Affinity is here modelled by spectral pitch distance: to calculate
spectral pitch distance, the first ten partials of each tone in a chord are embedded in an
absolute monad expectation vector, and the cosine distance between pairs of such vectors
is taken; a low spectral pitch distance is hypothesized to correspond to high perceived
affinity.

Example 6.2 Voice-leading distance and spectral pitch distance. This example illustrates
the difference between spectral pitch distance and voice-leading distance and, comparing
it with example 6.1, the difference between the spectral and fundamental pitch distances.
Figure 3 shows the spectral pitch distances (lighter colour indicates greater spectral dis-
tance, and hence lower affinity) between a 12-edo reference major triad (with three
voices) and all possible 12-edo triads containing a perfect fifth. All possible root-position
major and minor triads lie on the central diagonal, some of which are labelled, and the
spatial distance between them indicates their Euclidean voice-leading distance. Each
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Figure 3. Affinities, as modelled by the spectral pitch distances, between a C-major reference
triad and all possible 12-edo triads that contain a perfect fifth. (Spectral pitch distance is here
calculated with a cosine metric on absolute monad expectation vectors embedding the first ten
partials of each triad’s tones; three cents standard deviation Gaussian smoothing has been used.)
The greyscale indicates the spectral pitch distance from the reference triad (the lighter the colour,
the greater the distance and hence the lower the modelled affinity). In all other respects this figure
is the same as figure 2.

rectangle, therefore, represents a triad pair; for example, the rectangle labelled D repre-
sents the triad pair {C-major, D-major}, and the rectangle labelled d represents the triad
pair {C-major, d-minor}; the spatial distance between these two rectangles indicates the
Euclidean voice-leading distance between these two triad pairs.
Observe how there is a more complex patchwork of differing distances than in figure

2; this model suggests that the triad pair {C-major, d-minor} has greater affinity than
the neighbouring triad pair {C-major, D-major} (the rectangle labelled d is darker than
the rectangle labelled D); the triad pair {C-major, G-major} has greater affinity than
the neighbouring triad pair {C-major, G$-major}; the triad pair {C-major, e-minor} has
greater affinity than the neighbouring triad pair {C-major, E-major}; and so forth.
These patterns of differing affinities can be used to model some of the feelings of

expectation and resolution induced by tonal harmony: it may be hypothesised that any
pair of major or minor triads is likely to be heard as an alteration of another pair of major
or minor triads that has (significantly) higher affinity and is also (significantly) close in
terms of voice-leading. In figure 3, this is illustrated by two pairs of major or minor
triads that have different shadings and are spatially close. For example, the triad pair
{C-major, D-major} may be heard as an alteration of its higher-affinity neighbour {C-
major, d-minor}—the altered tone, F!, is resolved by continuing in the same direction as
its alteration to the tone G (in a G-major or e-minor triad), thus describing a IV→V→I
or IV→V→vi cadence. Similarly, {C-major, G$-major} may be heard as an alteration
of its higher-affinity neighbour {C-major, G-major}—in this case the whole triad, G$-
major, may be considered to be altered (flattened) so it is resolved, in the same direction
as its alteration, to F-major, thus describing a V→$II→I cadence. Similarly, {C-major,
E-major} may be be heard as an alteration of its higher-affinity neighbour {C-major,
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e-minor}—the altered tone, G!, is resolved by continuing in the same direction as its
alteration to the tone A (in an a-minor or F-major triad)—thus describing a $III→V→i
cadence or a $III→V→$VI deceptive cadence.
Many other plausible examples can be found, and a similar chart can be produced with

a minor triad reference. The underlying model is explored in greater detail in [3] and [4],
and is the subject of ongoing research.

6.2. Temperaments

The embeddings and metrics can be used to find effective temperaments, which are lower-
dimensional tunings that provide good approximations of higher-dimensional tunings
[18]. The dimension of a tuning is the minimum number of unique intervals (expressed
in a log(f) measure like cents or semitones) that are required to generate, by linear
combination, all of its intervals.
Many useful musical pitch collections are high-dimensional; for example, just in-

tonation intervals and chords with frequency ratios 4:5:6 and 4:5:6:7 are three- and
four-dimensional, respectively. But lower-dimensional tunings (principally one and two-
dimensional) also have a number of musically useful features; notably, they facilitate
modulation between keys, they can generate scales with simply patterned structures
(equal step scales in the case of 1-D tunings, well-formed scales in the case of 2-D tun-
ings [19]), and the tuning of all tones in the scale can be meaningfully controlled, by a
musician, with a single parameter [20].
Given the structural advantages of low-dimensional generated scales, it is useful to find

examples of such scales that also contain a high proportion of tone-tuples whose pitches
approximate privileged higher-dimensional intervals and chords. A familiar example is
the chromatic scale generated by the 100 cent semitone, which contains twelve triads
(one for each scale degree) tuned reasonably close to the just intonation major triad;
another familiar example is the meantone tuning of the diatonic scale (generated by a
period of approximately 1200 cents and a generator of approximately 697 cents), which
contains three major triads whose tuning is very close to the just intonation major triad.
There are, however, numerous alternative—and less familiar—possibilities.
Given a privileged pitch class collection embedded in an expectation tensor, it is easy

to calculate its distance from a set of n-edos (up to any given value of n).

Example 6.3 1-D approximations to 4:5:6 (JI major triad). The JI (just intonation) ma-
jor triad contains all (and only) the common-practice harmonic consonances (i.e., the
perfect fifth and fourth, and the major and minor thirds and sixths). It is, therefore,
interesting to find tunings that produce simple scales containing many of these inter-
vals. The just intonation major triad with frequency ratios of 4:5:6 is approximated
by (0, 386.3, 702) cents. Figure 4 shows the cosine distance between the relative dyad
expectation tensor embeddings of the JI major triad and all n-edos from n = 2 to 102.
Observe that the distances approach a flat line where increasing n is no longer ben-

eficial, and that the most prominent minima fall at the familiar 12-edo and at other
alternative n-edo’s (e.g., 19-, 22-, 31-, 34-, 41-, 46-, and 53-edo) that are well-known in
the microtonal literature.

A two-dimensional tuning has two generating intervals with sizes, in log (f), denoted
α and β. All intervals in the tuning can be generated by α and β. A β-chain is generated
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Figure 4. The distance (using the cosine metric on relative dyad expectation embeddings with a
Gaussian smoothing kernel of 3 cents standard deviation) between a just intonation major triad
(0, 386.3, 702) and all n-edos from n = 2 to n = 102.

by stacking integer multiples of β for all integers in a finite range of values, so a 19-tone
β-chain might consist of the notes jα − 9β, jα − 8β, . . . , jα + 8β, jα + 9β. Given an
arbitrary set of privileged intervals with a period of repetition ρ (typically 1200 cents),
how can similar two-dimensional tunings be found? It is convenient to fix the tuning of α
to ρ/n, for n ∈ N, because this ensures the resulting generated scale repeats at the period
whatever the value of β. So, once α is chosen, the procedure is to generate β-chains of a
given cardinality and to iterate the size of the β-tuning over the desired range. At each
iteration, the distance to the set of privileged intervals is measured using the relative
dyad expectation embeddings and a cosine metric.

Example 6.4 2-D approximations to 4:5:6 (JI major triad). Figure 5 shows the distance
between the relative dyad embeddings of a just intonation major triad and 19-tone β-
tunings ranging over 0 ≤ β ≤ 1199.9 cents in increments of 0.1 cents. On the right-hand
side, the Gaussian smoothing function has a standard deviation of 3 cents; on the left,
a standard deviation of 6 cents. Note that when using a single smoothing width, these
charts are perfectly symmetrical about the centre line passing through 0 and 600 cents
because a β-chain generated by β = B cents is identical to that generated by β = α−B
(assuming α and β are in a log value such as cents) [18].
Observe the following distance minima at different β-tunings: 503.8 cents corresponds

to the familiar meantone temperament; 498.3 cents to the helmholtz temperament; 442.9
cents to the sensipent temperament; 387.8 cents to the würschmidt temperament; 379.9
cents to the magic temperament; 317.1 to the hanson temperament; 271.6 cents to the
orson temperament; 176.3 cents to the tetracot temperament (the names for each of these
temperaments has been taken from [21]). It is interesting to note that the classic meantone
tunings of approximately 504 (or 696) cents are deemed closer than the helmholtz tunings
of approximately 498 (or 702) cents when the smoothing has 6 cents, and vice versa when
the smoothing has a 3 cent standard deviation.
Figure 6 compares the distance between between a just intonation major triad and

seven-tone β-chains (with β-tunings ranging from 0 to 1199.9 cents in increments of 0.1
cents) when embedded in relative dyad and relative triad expectation tensors. The left
side shows triad embeddings, the right side shows dyad embeddings.
Observe that, for low cardinality generated scales (like this seven-tone scale), only a

few tunings provide tone triples that are reasonably close to the just intonation major
triad: the meantone generated scale (β ∼ 696 cents) contains three major triads, the
magic scale (β ∼ 820 cents) contains two major triads, the porcupine scale (β ∼ 1, 037
cents) contains two major triads (but with less accurate tuning than the magic), the
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Figure 5. The cosine distance between relative dyad embeddings of a just intonation major
triad {0, 386.3, 702} and a 19-note β-chain whose β-tuning ranges from 0 to 1,199.9 cents. The
smoothing is Gaussian with standard deviations of 6 cents (left side), and 3 cents (right side).
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Figure 6. The cosine distance between relative dyad embeddings (right) and relative triad embed-
dings (left) of a just intonation major triad {0, 386.3, 702} and a 7-tone β-chain whose β-tuning
ranges from 0 to 1,199.9 cents. The smoothing is Gaussian with a standard deviation of 3 cents.
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Figure 7. The cosine distance (using a Gaussian smoothing kernel with a 3 cents standard de-
viation) between a just intonation Bohlen-Pierce “major” triad {0, 884.4, 1466.9}, with a period
of 1902 cents, and a 19-tone β-chain whose β-tuning ranges from 0 to 1901.9 cents.

hanson scale (β ∼ 883 cents) scale contains only one major triad (tuned extremely close
to just intonation). As the cardinality of the β-chain is increased, the distances between
the triadic embeddings approach those of the dyadic.

Example 6.5 2-D approximations to 3:5:7 (7-limit Bohlen-Pierce triad). The above two
examples have used familiar tonal structures (the octave of 1200 cents and the major
triad), but the methods are equally applicable to any alternative structure. One such
is the Bohlen-Pierce scale, which is intended for spectra containing only odd numbered
harmonics. It has a period of 3/1 (the “tritave”), which is approximated by 1902 cents.
The 3:5:7 triad, which is approximated by {0, 884.4, 1466.9} cents, is treated as a conso-
nance. Figure 7 shows the distance of a β-chain of 19 notes with 0 ≤ β ≤ 1901.9 cents
with a Gaussian smoothing of 3 cents standard deviation. The closest tuning is found at
439.5 cents, which is almost equivalent to 3×1902/13 and so corresponds to the 13-equal
divisions of the tritave tuning suggested by Bohlen and Pierce.

6.3. Pitch set theory

There is a rich heritage of measures used to determine the distance between pitch col-
lections in musical set theory, but these measures are typically predicated on the use of
12-tone equal temperament. Expectation tensors can be used to measure the distance
between pitch collections in any tuning (up to the pitch granularity determined by q) as
well as taking into account perceptual uncertainties.
The relative dyad embedding is of the TnI type—that is, it is invariant with respect to

transposition and inversion of the pitch collection it is derived from. It is also invariant
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Table 2. Cosine distances between a selection of pc-sets related by Z-relation, inversion, and transpo-
sition. Distances calculated with relative embeddings are in the lower triangle, absolute embeddings
in the upper triangle; dyad embeddings on the top line, triad embeddings on the second line.

(0, 1, 4, 6) Z-relation (0, 1, 3, 7) inversion (0, 2, 5, 6) transposition (1, 2, 5, 7)

(0, 1, 4, 6)
dyad 0 .833 .833 1
triad 0 1 1 1

(0, 1, 3, 7)
dyad 0 0 1 .833
triad 1 0 1 1

(0, 2, 5, 6)
dyad 0 0 0 .833
triad 1 0.5 0 1

(1, 2, 5, 7)
dyad 0 0 0 0
triad 0 1 1 0

over Z-relations (Z-related collections, such as {0, 1, 4, 6} and {0, 1, 3, 7}, have the same
interval content but are not related by transposition or inversion [14]). Relative triad
(and higher-ad) embeddings are invariant only with respect to transposition—that is
they are of the Tn type (e.g., the musical inversion of a major triad is a minor triad and,
although these two chords contain the same intervals, they have different embeddings in
a relative triad matrix). When used with pitch class vectors, absolute embeddings have
only period (octave) invariance; when used with pitch vectors, they have no invariances.

Example 6.6 Distances between pc-sets related by Z-relation, inversion, and transposi-
tion. Table 2 shows the cosine distances between the absolute and relative dyad and
triad embeddings of pitch class vector (0, 1, 4, 6), its Z-relation (0, 1, 3, 7), its inversion
(0, 2, 5, 6), and its transposition (1, 2, 5, 7). Distances calculated from absolute embed-
dings are in the top-right triangle, while those calculated from relative embeddings are
in the bottom-left triangle. In each case, the upper number is the distance calculated
using dyad embeddings, the lower number with triad embeddings.

It is reasonable to think that perceptions of pc-set similarity may be determined by
both their absolute and relative pitch structures. To model this, pc-set similarity can
be calculated as a linear combination of the distances between absolute and relative
embeddings of differing orders. For example, adding relative dyad and absolute monad
distances, gives a non-zero distance between pc-sets with differing interval content (like
(0, 1, 4, 5) and (0, 1, 4, 6)), but also takes into account their absolute pitches, thus ensuring
(0, 1, 4, 5) is closer to its transposition (4, 5, 8, 9) than it is to its transposition (2, 3, 6, 7)
(e.g., adding the two distance functions, with no weighting, gives summed cosine distances
of 0.533, 0.5 and 1, respectively).

7. Discussion

This paper has presented a novel family of embeddings and metrics for modelling the
perceived distance between pitch collections. The embeddings can be realised in a manner
that conforms with established psychoacoustic data on pitch perception (through the
use of Gaussian smoothing) and may be useful as components in broader models of
the perception and cognition of music. Indeed, to model any specific aspect of musical
perception, a variety of appropriate embeddings may be linearly combined, with their
weightings, the weightings of the tone saliences (if appropriate), and the type of metric,
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as free parameters to be determined from empirical data.
The models demonstrated in this paper differ from those of, for example, Krumhansl,

Lerdahl, Chew, or those taking a neo-Riemannian or Tonnetz-based approach, because
they are built from psychoacoustic first principles (the empirically derived probabilities
of hearing tones as having the same pitch). Furthermore, unlike the traditional pitch
embeddings used in set class theory, they are able to deal in a meaningful way with
non-standard tunings and when more than one tone plays the same, or a very similar,
pitch.
This paper has focused on expectation tensors, but the underlying pitch (class) re-

sponse matrices can also be used to generate salience (rather than expectation) tensors:
these give the probability of hearing any given r-ad of pitches (rather than the expected
number of tone-tuples heard at a given r-ad of pitches). There may also be scope in
applying Fourier transforms to the embeddings in order to determine similarities in the
spectrum of n-edos that approximate various pitch collections (e.g., when using an un-
smoothed absolute monad embedding, the nth element (0 ≤ n ≤ q − 1) of the discrete
Fourier transform magnitude vector, normalised by 1/d, gives the correlation between
that n-edo and the intervals found in the pc-set).
The embeddings and metrics described in this paper are also applicable to other do-

mains: a tone, as defined in section 1, can be thought of as a member of a class of discrete
and linear stimuli. A stimulus is discrete when it can be combined with other such stim-
uli, yet still be individually perceived (e.g., many tones may be sounded together, but
still be individually heard; even the separate spectral pitches of a complex harmonic tone
may be heard out); a stimulus is linear when it can be characterised by a scalar that is
the variable in a linear psychophysical function (e.g., a tone can be characterised by its
log (freq), which is linearly related to its perceived pitch height). In this generalised con-
text, a period indicates the size—in the units of the psychophysical function—at which
perceptual equivalence may occur (e.g., pitches that are octaves apart). These generalised
definitions indicate how the same methods may be applied to the perception of any other
(even non-auditory) discrete stimuli that can be transformed, with a link function, to
make the psychophysical function linear. An obvious example is the perception of timing
in rhythms: the “physical” time of a percussive event is linearly related to the perceived
time of the event, and a measure (or some multiple, or division, thereof) can be thought
of as representing the period. In this context, the smoothing represents perceptual or
cognitive inaccuracies in timing; for example, it might be possible to embed a rhythmic
motif containing four events in a relative tetrad expectation matrix (in the time domain),
and compare this with a selection of other similarly embedded rhythm patterns to find
one with the closest match (i.e., one that contains the greatest number of patterns that
are similar to the complete motif).
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Appendix A. Standard deviation of Gaussian probability mass function

In a two-alternative forced-choice (2-afc) experiment, the frequency difference limen
(frequency dl) is normally defined as the value at which the true positive and false
positive rates indicate a d′ (also known as d prime) of approximately one (a true positive
is when two tones with different frequencies are identified as having different pitches, a
false positive is when two tones with the same frequency are identified as having different
pitches). The value of d′ is defined as the distance, in standard deviations, between the
mean of the responses to the signal-plus-noise stimuli and the mean of the responses to
the noise-alone stimuli (for the above test, a signal-plus-noise stimulus corresponds to two
different frequencies; a noise-alone stimulus to two identical frequencies). This implies
the internal response to a tone of pitch j is a Gaussian centred at j, with a standard
deviation equivalent to the frequency dl at j.

Experimentally obtained data (e.g., [1]) typically give a frequency dl, for tones with
harmonic partials, that is equivalent (over a broad range of musically useful frequencies)
to a pitch dl of approximately 3 cents. Such results are obtained in laboratory con-
ditions with simple stimuli and minimal time gaps between tones (hence comparisons
are conducted from auditory sensory (echoic) memory, or short-term memory): in real
music, tones and chords are presented as part of a complex and distracting stream of
musical information, and there may be long gaps between the presentations of the tone
collections (hence requiring long-term memory, which is less precise). For these reasons,

∗Corresponding author. Email: andymilne@tonalcentre.org
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it may be appropriate to treat 3 cents as a minimum standard deviation; larger values
may provide more effective results in some models.

Appendix B. Tensors, tensor operations, and their notation

A tensor is a generalisation of a vector or matrix into higher orders. An order-0 tensor
is a scalar, an order-1 tensor is a vector, an order-2 tensor is a matrix, an order-3 tensor
may be thought of as a 3-dimensional array of numbers, and so forth. The size of a tensor

of order-r X ∈ R
i×j×···×m may be shown as

r
︷ ︸︸ ︷

i × j × · · · × m
, which means the first mode

is of dimension i (it contains i entries); the second mode is of dimension j, and so forth. It
is often convenient to specify the order of a tensor by its subscript so that Xq3 represents

an order-3 tensor in R
q3

(which is R
q×q×q). Lowercase italic letters such as xi,j,k denote

scalar tensor entries, and the subscripts specify the locations. A specific permutation of
a tensor’s modes is indicated with a subscript in angle brackets, so if X is a tensor of size
i × j × k × !, X〈3,1,4,2〉 has size j × ! × i × k.

The symbol ◦ denotes the Hadamard (entrywise) product of two tensors. If C = A ◦B,
then ci,j,... = ai,j,... bi,j,... (A and B must be of the same size). For example,

(
1 3
2 4

)

◦

(
5 7
6 8

)

=

(
1·5 3·7
2·6 4·8

)

=

(
5 21
12 32

)

. (B1)

The outer product ⊗ of a tensor A of size i× j and a tensor B of size !×m produces a
tensor of size i×j×!×m containing all possible products of their elements. If C = A⊗B,
then ci,j,...,!,m,... = ai,j,... b!,m,.... For example,

(
1 3
2 4

)

⊗

(
5 7
6 8

)

=







1·5 1·7 3·5 3·7
1·6 1·8 3·6 3·8
2·5 2·7 4·5 4·7
2·6 2·8 4·6 4·8







=







5 7 15 21
6 8 18 24
10 14 20 28
12 16 24 32







. (B2)

The 2 × 2 partitions help to visualise the four modes of the resulting tensor: stepping
from a partition to the one below increments the index of the first mode; stepping from
a partition to the one on its right increments the index of the second mode; stepping
down a row, within the same partition, increments the index of the third mode; stepping
rightwards by a column, within the same partition, increments the index of the fourth
mode. The symbol ⊗r denotes the rth outer power of a tensor.

The Khatri-Rao product % is the “matching columnwise” Kronecker product of ma-
trices. The Khatri-Rao product of a matrix of size i × n and a matrix of size j × n is a
matrix of size ij×n (which may be interpreted as a tensor of size i×j×n). If C = A%B,
then ci,j,n = ai,n bj,n. This can be naturally extended to successive Khatri-Rao products
of matrices: if F = A % B % · · · % D, then fi,j,...,!,n = ai,n bj,n · · · d!,n (the rows of the
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matrices, indexed here by n, must have the same dimension).1 For example,

(

1 3
2 4

)

!

(

5 7
6 8

)

=









1·5 1·6
3·7 3·8
2·5 2·6
4·7 4·8









=









5 6
21 24
10 12
28 32









, (B3)

and

(

1 3
2 4

)

!

(

5 7
6 8

)

!

(

9 11
10 12

)

=









1·5·9 3·7·11 1·6·9 3·8·11
1·5·10 3·7·12 1·6·10 3·8·12
2·5·9 4·7·11 2·6·9 4·8·11
2·5·10 4·7·12 2·6·10 4·8·12









=









45 231 54 264
50 252 60 288
90 308 108 352
100 336 120 384









.

(B4)
As before, the partitions indicate the resulting tensors’ modes. The symbol !r denotes
the rth Khatri-Rao power.

The inner (dot) product • contracts the last index of the first tensor with the first
index of the second tensor: if C = A • B, then c...,i,j,!,m,... =

∑

k

a...,i,j,k bk,!,m,... (the inner

two modes of A and B, indexed here by k, must have the same dimension). For an order-r
tensor and an order-s tensor, this results in an order-(r + s − 2) tensor. For example,





1
2
3



 •





4
5
6



 = 1·4 + 2·5 + 3·6 = 32, (B5)

and

(

1 3
2 4

)

•

(

5 7
6 8

)

=

(

1·5+3·6 1·7+3·8
2·5+4·6 2·7+4·8

)

=

(

23 31
34 46

)

. (B6)

Appendix C. Computational simplification of expectation tensors

The general form of the expectation tensors is, as shown in section 4.4,

xej1,j2,...,jr

=
∑

(i1,...,ir)∈Dr:
in #=ip

r
∏

m=1

xim,jm
, (C1)

which can be written in tensor notation as

Xqr =
(

(

1qr ⊗ Edr
)

◦ X
⊗r
〈r+1,1,r+2,2,...,...,r+r,r〉

)

r
•
1dr (C2)

1In Mathematica, this product can be written Outer[Times, a, b, . . . , d, 1] where the final
“1” specifies the level at which the outer product is calculated.
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where 1qr ∈ R
qr

is the tensor of all ones, the r
•

inner product with 1dr represents r

successive inner products with 1d, and Edr is constructed with elements

ei1,i2,...,ir
=

{

0 if in = ip,

1 otherwise.
(C3)

To understand the construction in (C2), observe that the outer product 1qr ⊗ Edr

extends the tensor of nonrepeated indices into r additional modes, each of dimension q.
Since X is a d× q matrix, X

⊗r
∈ R

d×q×d×q×···×d×q is of order 2r. The index permutation
reshapes X

⊗r into an element of R
qr×dr

. The Hadamard product with the permuted X
⊗r,

therefore, sets all entries occurring at locations with repeated indices to zero. These are
precisely the entries that are excluded from the summation (C1). The rth inner product
then sums over the r different d-dimensional modes to collapse to the desired tensor in
R

qr

.
The expression takes this form due to the constraints on which index values are summed

over. Both forms (C1) and (C2) are cumbersome to calculate directly. Were there no
constraint on which indices in (C1) are summed over, (C2) would take the form

X
⊗r
〈r+1,1,r+2,2,...,...,r+r,r〉

r
•
1dr . (C4)

This requires (dq)r multiplications, but can be reduced to qr multiplications by rearrang-
ing it to

(

1
′
dX

)⊗r
. (C5)

This suggests an alternative way of calculating (C2), to sum all of the terms and then
subtract the terms that should be excluded.

For example, consider the r = 2 case. The unconstrained term is (1′
dX)⊗2 and the term

corresponding to the repeated indices is (X′
$ X

′) • 1d, which simplifies to X
′
X. Hence

equation (9) of the main text can be written

X
(2)
e =

(

1
′
dX

)

⊗
(

1
′
dX

)

−
(

X
′
X

)

. (C6)

The process for r = 3 is similar. The unconstrained term is (1′
dX)⊗3. There are three

terms corresponding to the i = j constraint, the j = k constraint and the i = k constraint,
each is equal to one of the transpositions of (1′

dX)⊗ (X′
X). These have now subtracted

out the i = j = k constraint three times, and so X
′ &3 • 1d must be added back in twice

to compensate. Accordingly, equation (12) of the main text can be rewritten

X
(3)
e =

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

1
′
dX

)

−

(

(

1
′
dX

)

⊗
(

X
′
X

)

)

〈1,2,3〉
(C7)

−

(

(

1
′
dX

)

⊗
(

X
′
X

)

)

〈2,1,3〉
−

(

(

1
′
dX

)

⊗
(

X
′
X

)

)

〈3,1,2〉
+ 2

(

X
′
$ X

′
$ X

′
)

• 1d.

An analogous procedure can be followed for any value of r, though this becomes in-
creasingly difficult because the number of terms grows as r!. Each term represents a
unique minimal set of different index constraints. For example, one term A might have
the index constraints i1 = i2 and i3 = i4. Another term B might have no constraint on
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i1 but have i2 = i3 = i4. When the indices are ordered sequentially, the term can be
calculated by writing each constraint as a subterm of the form

X
′ "c

• 1d, (C8)

where c is the number of indices in that constraint, and then taking the outer product
of the different subterms. For instance, with index constraints A, (C8) is

(

(

X
′
! X

′
)

• 1d

)

⊗

(

(

X
′
! X

′
)

• 1d

)

,

which simplifies to

(

X
′
X

)

⊗
(

X
′
X

)

.

With index constraints B, (C8) is

(

X
′
• 1d

)

⊗

(

(

X
′
! X

′
! X

′
)

• 1d

)

,

which simplifies to (1′
dX)⊗

(

(X′
! X

′
! X

′) •1d

)

. The permutation of the indices in the
constraints of a term is given by the corresponding permutation of that term’s tensor.
For example, the term with constraints i1 = i3 and i2 = i4 (a permutation of A) is
represented by

(

(X′
X)⊗(X′

X)
)

〈1,3,2,4〉
while the term with constraints i2 and i1 = i3 = i4

(a permutation of B) is represented by
(

(1′
dX) ⊗

(

(X′
! X

′
! X

′) • 1d

)

)

〈2,1,3,4〉
.

For example, the r! = 24 terms for the r = 4 case can be written

X
(4)
e =

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

1
′
dX

)

−

(

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

X
′
X

)

)

〈1,2,3,4〉
−

(

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

X
′
X

)

)

〈1,3,2,4〉

−

(

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

X
′
X

)

)

〈1,4,2,3〉
−

(

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

X
′
X

)

)

〈2,3,1,4〉

−

(

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

X
′
X

)

)

〈2,4,1,3〉
−

(

(

1
′
dX

)

⊗
(

1
′
dX

)

⊗
(

X
′
X

)

)

〈3,4,1,2〉

+ 2

(

(

1
′
dX

)

⊗

(

(

X
′
! X

′
! X

′
)

• 1d

)

)

〈1,2,3,4〉

+ 2

(

(

1
′
dX

)

⊗

(

(

X
′
! X

′
! X

′
)

• 1d

)

)

〈2,1,3,4〉

+ 2

(

(

1
′
dX

)

⊗

(

(

X
′
! X

′
! X

′
)

• 1d

)

)

〈3,1,2,4〉

+ 2

(

(

1
′
dX

)

⊗

(

(

X
′
! X

′
! X

′
)

• 1d

)

)

〈4,1,2,3〉

+
(

(

X
′
X

)

⊗
(

X
′
X

)

)

〈1,2,3,4〉
+

(

(

X
′
X

)

⊗
(

X
′
X

)

)

〈1,3,2,4〉
+

(

(

X
′
X

)

⊗
(

X
′
X

)

)

〈1,4,2,3〉

− 6
(

X
′
! X

′
! X

′
! X

′
)

• 1d (C9)

While expressions like (C7) and (C9) are harder to visualise than the more compact
form (C2), they can be calculated more efficiently: the unsimplified form has O

(

(dq)r
)

multiplications, the simplified form has O
(

d (qr)
)

—a ratio of 1 : dr−1. Such simplifications



6 A.J. Milne et al.

are key in being able to calculate the practical examples of Section 6 of the main text,
some of which use large values for d (102 in example 6.3 and 19 in example 6.5).
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