1,250 research outputs found

    Impacts of horizontal resolution on simulated climate statistics in ECHAM4

    No full text
    The sensitivity of a general circulation model to changes in resolution is studied using the Max Planck Institute for Meteorology (MPI) 19-level model, ECHAM4. Simulations extending over a period between 10 and 15 years, with observed sea surface temperatures as lower boundary conditions from 1979 onward, have been performed using four different horizontal resolutions, T21, T30, T42 and T106. The atmospheric time-mean state and the intraseasonal variability are compared to the European Centre for Medium Range Weather Forecasts (ECMWF) reanalyses and a few other observational datasets. The T30, T42 and T106 simulations are similar in many respects, whereas the T21 simula- tion is qualitatively different. Several effects related to model resolution could be identi- fied, such as increasing tropical upper tropospheric warming with increasing resolution. This is due to more vigorous tropical convection, larger ice water content and, hence, increasing cirrus cloud greenhouse effect. Associated with this increasing warming at higher resolution is a poleward expansion of the zonally averaged circulation regime. On the other hand, the zonally asymmetric component of the circulation, i.e., the stationary waves, improve with higher resolution. Also, higher resolution has a positive impact on regional precipitation patterns which are affected by orography such as the summer mon- soon precipitation over India. Intraseasonal variability has been analyzed only for the higher resolution models, T42 and T106. Compared to the ECMWF reanalyses, both models are able to simulate the intrasea- sonal geopotential height variability, eddy fluxes of heat and momentum, and eddy kinetic energy with reasonable accuracy. This applies to transient eddies in both the bandpass and lowpass regime and to the stationary eddies as well. Some biases can be identified which are more or less independent of resolution. These include the mislocation of the Azores high and the overestimation of its intensity, a cold bias in the polar upper troposphere and lower stratosphere and the poleward and upward displacement of the maxima of geopotential height variability, momentum fluxes and eddy kinetic energy. An important finding is that the operational ECMWF analyses, which have been widely used for model validation, considerably overestimate the lowpass variability, as compared to the reanalyses, due to frequent changes of the forecast model and data assimilation scheme. This implies that the results from our investigations are not directly comparable to previous investigations that used operational analyses for validation

    Global solutions for random vorticity equations perturbed by gradient dependent noise, in two and three dimensions

    Full text link
    The aim of this work is to prove an existence and uniqueness result of Kato-Fujita type for the Navier-Stokes equations, in vorticity form, in 2D2-D and 3D3-D, perturbed by a gradient type multiplicative Gaussian noise (for sufficiently small initial vorticity). These equations are considered in order to model hydrodynamic turbulence. The approach was motivated by a recent result by V. Barbu and the second named author in \cite{b1}, that treats the stochastic 3D3D-Navier-Stokes equations, in vorticity form, perturbed by linear multiplicative Gaussian noise. More precisely, the equation is transformed to a random nonlinear parabolic equation, as in \cite{b1}, but the transformation is different and adapted to our gradient type noise. Then global unique existence results are proved for the transformed equation, while for the original stochastic Navier-Stokes equations, existence of a solution adapted to the Brownian filtration is obtained up to some stopping time

    Scaling limit of stochastic dynamics in classical continuous systems

    Full text link
    We investigate a scaling limit of gradient stochastic dynamics associated to Gibbs states in classical continuous systems on Rd,d1{\mathbb R}^d, d \ge 1. The aim is to derive macroscopic quantities from a given micro- or mesoscopic system. The scaling we consider has been investigated in \cite{Br80}, \cite{Ro81}, \cite{Sp86}, and \cite{GP86}, under the assumption that the underlying potential is in C03C^3_0 and positive. We prove that the Dirichlet forms of the scaled stochastic dynamics converge on a core of functions to the Dirichlet form of a generalized Ornstein--Uhlenbeck process. The proof is based on the analysis and geometry on the configuration space which was developed in \cite{AKR98a}, \cite{AKR98b}, and works for general Gibbs measures of Ruelle type. Hence, the underlying potential may have a singularity at the origin, only has to be bounded from below, and may not be compactly supported. Therefore, singular interactions of physical interest are covered, as e.g. the one given by the Lennard--Jones potential, which is studied in the theory of fluids. Furthermore, using the Lyons--Zheng decomposition we give a simple proof for the tightness of the scaled processes. We also prove that the corresponding generators, however, do not converge in the L2L^2-sense. This settles a conjecture formulated in \cite{Br80}, \cite{Ro81}, \cite{Sp86}

    The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100

    Get PDF
    The evolution of the global aerosol system from 1860 to 2100 is investigated through a transient atmosphere-ocean General Circulation Model climate simulation with interactively coupled atmospheric aerosol and oceanic biogeochemistry modules. The microphysical aerosol module HAM incorporates the major global aerosol cycles with prognostic treatment of their composition, size distribution, and mixing state. Based on an SRES A1B emission scenario, the global mean sulfate burden is projected to peak in 2020 while black carbon and particulate organic matter show a lagged peak around 2070. From present day to future conditions the anthropogenic aerosol burden shifts generally from the northern high-latitudes to the developing low-latitude source regions with impacts on regional climate. Atmospheric residence- and aging-times show significant alterations under varying climatic and pollution conditions. Concurrently, the aerosol mixing state changes with an increasing aerosol mass fraction residing in the internally mixed accumulation mode. The associated increase in black carbon causes a more than threefold increase of its co-single scattering albedo from 1860 to 2100. Mid-visible aerosol optical depth increases from pre-industrial times, predominantly from the aerosol fine fraction, peaks at 0.26 around the sulfate peak in 2020 and maintains a high level thereafter, due to the continuing increase in carbonaceous aerosols. The global mean anthropogenic top of the atmosphere clear-sky short-wave direct aerosol radiative perturbation intensifies to −1.1 W m^−2 around 2020 and weakens after 2050 to −0.6 W m^−2, owing to an increase in atmospheric absorption. The demonstrated modifications in the aerosol residence- and aging-times, the microphysical state, and radiative properties challenge simplistic approaches to estimate the aerosol radiative effects from emission projections

    Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case

    Get PDF
    50 pagesInternational audienceWe consider a possibly degenerate porous media type equation over all of Rd\R^d with d=1d = 1, with monotone discontinuous coefficients with linear growth and prove a probabilistic representation of its solution in terms of an associated microscopic diffusion. This equation is motivated by some singular behaviour arising in complex self-organized critical systems. The main idea consists in approximating the equation by equations with monotone non-degenerate coefficients and deriving some new analytical properties of the solution

    A Normal-Mode Approach to Jovian Atmospheric Dynamics

    Get PDF
    We propose a nonlinear, quasi-geostrophic, baroclinic model of Jovian atmospheric dynamics, in which vertical variations of velocity are represented by a truncated sum over a complete set of orthogonal functions obtained by a separation of variables of the linearized quasi-geostrophic potential vorticity equation. A set of equations for the time variation of the mode amplitudes in the nonlinear case is then derived. We show that for a planet with a neutrally stable, fluid interior instead of a solid lower boundary, the baroclinic mode represents motions in the interior, and is not affected by the baroclinic modes. One consequence of this is that a normal-mode model with one baroclinic mode is dynamically equivalent to a one layer model with solid lower topography. We also show that for motions in Jupiter's cloudy lower troposphere, the stratosphere behaves nearly as a rigid lid, so that the normal-mode model is applicable to Jupiter. We test the accuracy of the normal-mode model for Jupiter using two simple problem forced, vertically propagating Rossby waves, using two and three baroclinic modes and baroclinic instability, using two baroclinic modes. We find that the normal-road model provide qualitatively correct results, even with only a very limited number of vertical degrees of freedom

    Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    Get PDF
    The double-moment cloud microphysics scheme from ECHAM4 has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass and number concentrations and the aerosol mixing state. This results in a much better agreement with observed vertical profiles of the black carbon and aerosol mass mixing ratios than with the previous version ECHAM4, where only the different aerosol mass mixing ratios were predicted. Also, the simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and –35°C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to –1.8 W m^−2 in ECHAM5, when a relative humidity dependent cloud cover scheme and present-day aerosol emissions representative for the year 2000 are used. It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed

    Intensified Asian Summer Monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations

    Get PDF
    The Asian summer monsoon response to global warming is investigated by a transient green‐house warming integration with the ECHAM4/OPYC3 CGCM. It is demonstrated that increases of greenhouse gas concentrations intensify the Asian summer monsoon and its variability. The intensified monsoon results mainly from an enhanced land‐sea contrast and a northward shift of the convergence zone. A gradual increase of the monsoon variability is simulated from year 2030 onwards. It seems to be connected with the corresponding increase of the sea surface temperature variability over the tropical Pacific
    corecore