3,196 research outputs found
A fractional porous medium equation
We develop a theory of existence, uniqueness and regularity for a porous
medium equation with fractional diffusion, in , with ,
and . An -contraction semigroup is
constructed and the continuous dependence on data and exponent is established.
Nonnegative solutions are proved to be continuous and strictly positive for all
,
Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production
Intercellular communication orchestrates effective immune responses against disease-causing agents. Extracellular vesicles (EVs) are potent mediators of cell-cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell. Here, we show that formation of cognate primary T-B lymphocyte immune contacts promotes transfer of a very restricted set of T-cell EV-microRNAs (mmu-miR20-a-5p, mmu-miR-25-3p, and mmu-miR-155-3p) to the B cell. Transferred EV-microRNAs target key genes that control B-cell function, including pro-apoptotic BIM and the cell cycle regulator PTEN. EV-microRNAs transferred during T-B cognate interactions also promote survival, proliferation, and antibody class switching. Using mouse chimeras with Rab27KO EV-deficient T cells, we demonstrate that the transfer of small EVs is required for germinal center reaction and antibody production in vivo, revealing a mechanism that controls B-cell responses via the transfer of EV-microRNAs of T-cell origin. These findings also provide mechanistic insight into the Griscelli syndrome, associated with a mutation in the Rab27a gene, and might explain antibody defects observed in this pathogenesis and other immune-related and inflammatory disorders.This manuscript was funded by grants SAF2017-82886-R (FS-M) from the Spanish Ministry of Economy and Competitiveness; CAM (S2017/BMD-3671-INFLAMUNE-CM) from the Comunidad de Madrid (FS-M); CIBERCV (CB16/11/00272), BIOIMID PIE13/041 from the Instituto de Salud Carlos III and from the Fundación La MaratóTV3(grant122/C/2015). The current research has received funding from “la Caixa” Foundation under the project code HR17-00016. VGY is supported by the AECC foundation. A.R.R. is supported by CNIC funding. This project was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades SAF2016-75511-R, and La Caixa Health Research Program HR17-00247 grant to A.R.R. Grants from Ramón Areces Foundation “Ciencias de la Vida y de la Salud” (XIX Concurso-2018) and from Ayuda Fundación BBVA y Equipo de Investigación Científica (BIOMEDICINA-2018) (to FSM). The CNIC is supported by the Ministerio de Ciencia, Innovacion y Universidades and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy
Post-translational modifications hugely increase the functional diversity of proteomes. Recent algorithms based on ultratolerant database searching are forging a path to unbiased analysis of peptide modifications by shotgun mass spectrometry. However, these approaches identify only one-half of the modified forms potentially detectable and do not map the modified residue. Moreover, tools for the quantitative analysis of peptide modifications are currently lacking. Here, we present a suite of algorithms that allows comprehensive identification of detectable modifications, pinpoints the modified residues, and enables their quantitative analysis through an integrated statistical model. These developments were used to characterize the impact of mitochondrial heteroplasmy on the proteome and on the modified peptidome in several tissues from 12-week-old mice. Our results reveal that heteroplasmy mainly affects cardiac tissue, inducing oxidative damage to proteins of the oxidative phosphorylation system, and provide a molecular mechanism explaining the structural and functional alterations produced in heart mitochondria.We thank Simon Bartlett (CNIC) for English editing. This study was supported by competitive grants from the Spanish Ministry of Economy and Competitiveness (MINECO) (BIO2015-67580-P) through the Carlos III Institute of Health-Fondo de Investigacion Sanitaria (PRB2, IPT13/0001-ISCIII-SGEFI/FEDER; ProteoRed), by Fundacion La Marato TV3, and by FP7-PEOPLE-2013-ITN ``Next-Generation Training in Cardiovascular Research and Innovation-Cardionext.'' N.B. is a FP7-PEOPLE-2013-ITN-Cardionext Fellow. The CNIC is supported by the MINECO and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO Award SEV-2015-0505).S
Porous clays heterostructures as supports of iron oxide for environmental catalysis
[EN] Porous Clays Heterostructures (PCH) from natural pillared clays (bentonite with a high proportion of montmorillonite) have been used as supports of iron oxide for two reactions of environmental interest: i) the elimination of toluene (a representative compound of one of the most toxic subsets of volatile organic compounds, aromatics) by total oxidation and ii) the selective oxidation of H2S to elemental sulfur. For both reactions these catalysts have resulted to be remarkably more efficient than similar catalysts prepared using conventional silica as a support. Thus, in the total oxidation of toluene it has been observed that the catalytic activity obtained using siliceous PCH is two orders of magnitude higher than that with conventional silica. The catalytic activity has shown to be dependant of the capacity of the support for dispersing iron oxide in a way that the higher the dispersion of iron oxide on the surface of the support, the higher is the activity. In the case of the selective oxidation of H2S to S both higher catalytic activity and higher selectivity to S have been observed using siliceous porous clays heterostructures than using conventional silica. Highly dispersed FeOx species have been shown as highly selective towards elemental sulfur whereas more aggregated FeOx species favour the formation of sulphur oxides decreasing the selectivity to S. Analyses of the surface by XPS have shown the predominance of sulfate species in the catalysts presenting low selectivity to elemental sulfur.The authors would like to acknowledge the DGICYT in Spain (CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R, CTQ2012-37925-C03-2, CTQ2012-37925-C03-3 and CTQ2012-37984-C02-01) and FEDER for financial support. We also thank the University of Valencia for funding (UV-INV-AE-16-484416) and SCSIE-UV for assistance.Sanchis Martinez, R.; Cecilia, J.; Soriano Rodríguez, MD.; Vazquez, I.; Dejoz, A.; López Nieto, JM.; Rodriguez-Castellon, E.... (2008). Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chemical Engineering Journal. 334:1159-1168. https://doi.org/10.1016/j.cej.2017.11.060S1159116833
miRNA profiling during antigen-dependent T cell activation: A role for miR-132-3p
microRNAs (miRNAs) are tightly regulated during T lymphocyte activation to enable the establishment of precise immune responses. Here, we analyzed the changes of the miRNA profiles of T cells in response to activation by cognate interaction with dendritic cells. We also studied mRNA targets common to miRNAs regulated in T cell activation. pik3r1 gene, which encodes the regulatory subunits of PI3K p50, p55 and p85, was identified as target of miRNAs upregulated after T cell activation. Using 3'UTR luciferase reporter-based and biochemical assays, we showed the inhibitory relationship between miR-132-3p upregulation and expression of the pik3r1 gene. Our results indicate that specific miRNAs whose expression is modulated during T cell activation might regulate PI3K signaling in T cells.We thank Miguel Vicente-Manzanares for help with English editing and Almudena R. Ramiro for helpful discussions. We appreciate help from Gloria Martinez del Hoyo on DCs experiments set up. We also thank the CNIC Genomics, Bioinformatics and Cellomics Units for technical support. This work was supported by grants SAF2014-55579R from Ministerio de Economia y Competitividad-Spain, ERC-2011-AdG 294340-GENTRIS, CIBER CARDIOVASCULAR (FEDER and Instituto de Salud Carlos III), PIE-13-00041 and INDISNET S2011-BMD-2332 (F.S.M.). The Centro Nacional de Investigaciones Cardiovasculares (CNIC, Spain) is supported by the Ministerio de Economia y Competitividad-Spain and the Pro-CNIC Foundation.S
Evaluation of Safety of a Newly Formulated Pirfenidone in Chronic Kidney Disease: A Non-Randomized Pilot Study in Mexican Patients
The aim of this pilot clinical trial was to evaluate the safety of a new formulation of prolonged-release Pirfenidone (PR-PFD) in chronic kidney disease (CKD), specifically focal and segmental glomerular hyalinization (FSGH). Open-label, pilot, nonrandomized trial. Eighteen patients previously diagnosed with CKD stages 1– 5 according to “Kidney Disease: Improving Global Outcomes” were enrolled in the study. Target dos-age of PFD was 1200 mg twice a day in the form of prolonged-release tablets to reach a full dosage of 2400 mg daily. Clinical trial was carried out for 60 months to evaluate the safety and efficacy of a newly formulated PR-PFD in patients with CKD. After the treatment for 60 months, it was found that PR-PFD kept renal function from declining significantly in CKD patients, as the glomerular filtration rate (GFR) showed only minimal variations throughout the study. Estimated glomerular filtration rate (eGFR) showed no differences at both baseline and the end points. Proteinuria improved, and creatinine, cystatin C, urea, hemoglobin and hepatic transaminases remained constant without any considerable changes across the study. Minor side effects were noticed when compared with those found in previous studies, indicating an increased tolerance to this pharmaceutical formulation of PFD. Prolonged-released PFD could be safely used as an adjuvant therapy in patients with CKD.Registry number was obtained from ClinicalTrials.gov (NCT02408744)
The IL7RA rs6897932 polymorphism is associated with progression of liver fibrosis in patients with chronic hepatitis C: Repeated measurements design
The polymorphisms at the α-chain of the IL-7 receptor (IL7RA) have been related to T-cell homeostasis and development and may contribute to immune system deregulation. In the present study, we analyzed the association between IL7RA polymorphisms and the progression of liver fibrosis in patients infected with HCV. We carried out a retrospective study with a design consisting of repeated measurements in 187 HCV-infected patients, to study the risk prediction of liver fibrosis progression using genetic factors. We genotyped the rs6897932, rs987106 and rs3194051 IL7RA polymorphisms using the Agena Bioscience's MassARRAY. Transient elastography was used to measure liver stiffness. The used cut-offs were: 0.05). In univariate analysis, the rs6897932 T allele had a positive relationship with an increase in LSM (arithmetic mean ratio (AMR) = 1.21 (95%CI = 1.08; 1.36); p = 0.001), progression to advanced fibrosis (F≥3) (odds ratio (OR) = 2.51 (95%CI = 1.29; 4.88); p = 0.006) and progression to cirrhosis (F4) (OR = 2.71 (95%CI = 0.94; 5.03); p = 0.069). In multivariable analysis, the rs6897932 T allele was related to a higher increase of LSM values during follow-up (adjusted AMR = 1.27 (95%CI = 1.13; 1.42); p<0.001) and higher odds of progression to advanced fibrosis [adjusted OR = 4.46 (95%CI = 1.87; 10.62); p = 0.001], and progression to cirrhosis [adjusted OR = 3.92 (95%CI = 1.30; 11.77); p = 0.015]. Regarding IL7RA rs987106 and rs3194051 polymorphisms, we did not find significant results except for the relationship between IL7RA rs987106 and the increase in LSM values [adjusted OR = 1.12 (95%CI = 1.02; 1.23); p = 0.015]. The IL7RA rs6897932 polymorphism seems to be related to increased risk of liver fibrosis progression in HCV-infected patients. Thus, the rs6897932 polymorphism could be related to the physiopathology of CHC and might be used to successfully stratify the risk of CHC progression.This work has been supported by grants given by Fondo de Investigación de Sanidad en España (FIS) [Spanish Health Founds for Research] [grant numbers PI14CIII/00011, PI15CIII/00024 and PT13/0001]. MAJS, LMM, and AFR are supported by “Instituto de Salud Carlos III” [grant numbers CD13/00013, CD14/00002 and CP14/0010].S
Noninvasive early detection of colorectal cancer by hypermethylation of the LINC00473 promoter in plasma cell-free DNA
Background Current noninvasive assays have limitations in the early detection of colorectal cancer. We evaluated the clinical utility of promoter methylation of the long noncoding RNA LINC00473 as a noninvasive biomarker to detect colorectal cancer and associated precancerous lesions. Methods We evaluated the epigenetic regulation of LINC00473 through promoter hypermethylation in colorectal cancer cell lines using bisulfite genomic sequencing and expression analyses. DNA methylation of LINC00473 was analyzed in primary colorectal tumors using 450K arrays and RNA-seq from The Cancer Genome Atlas (TCGA). Tissue-based findings were validated in several independent cohorts of colorectal cancer and advanced colorectal polyp patients by pyrosequencing. We explored the clinical utility of LINC00473 methylation for the early detection of colorectal cancer in plasma cell-free DNA by quantitative methylation-specific PCR and droplet digital PCR. Results LINC00473 showed transcriptionally silencing due to promoter hypermethylation in colorectal cancer cell lines and primary tumors. Methylation of the LINC00473 promoter accurately detected primary colorectal tumors in two independent clinical cohorts, with areas under the receiver operating characteristic curves (AUCs) of 0.94 and 0.89. This biomarker also identified advanced colorectal polyps from two other tissue-based clinical cohorts with high diagnostic accuracy (AUCs of 0.99 and 0.78). Finally, methylation analysis of the LINC00473 promoter in plasma cell-free DNA accurately identified patients with colorectal cancer and advanced colorectal polyps (AUCs of 0.88 and 0.84, respectively), which was confirmed in an independent cohort of patients. Conclusions Hypermethylation of the LINC00473 promoter is a new promising biomarker for noninvasive early detection of colorectal cancer and related precancerous lesions
Anosognosia in Amnestic Mild Cognitive Impairment is Related to Diminished Hippocampal Volume Comparable to Alzheimer's Disease Dementia:Preliminary MRI Findings
Although the presence of anosognosia in amnestic mild cognitive impairment (aMCI) may be predictive of conversion to Alzheimer’s disease (AD), little is known about its neural correlates in AD and aMCI. Four different groups were compared using volumetric and diffusion magnetic resonance imaging metrics in regions of interest (hippocampus and cingulum cortex gray matter, cingulum bundle white matter): aMCI subjects with anosognosia (n = 6), aMCI subjects without anosognosia (n = 12), AD subjects with anosognosia (n = 6), and AD subjects without anosognosia (n = 9). aMCI subjects with anosognosia displayed a significantly lower gray matter density (GMD) in the bilateral hippocampus than aMCI subjects without anosognosia, which was accounted for by bilateral hippocampal differences. Furthermore, we identified that the mean hippocampal gray matter density of aMCI subjects with anosognosia was not statistically different than that of AD subjects. The groups of aMCI and AD subjects with anosognosia also displayed a lower GMD in the bilateral cingulum cortex compared to subjects without anosognosia, but these differences were not statistically significant. No statistically significant differences were found in the fractional anisotropy or mean diffusivity of the hippocampus or cingulum between subjects with and without anosognosia in aMCI or AD groups. While these findings are derived from a small population of subjects and are in need of replication, they suggest that anosognosia in aMCI might be a useful clinical marker to suspect brain changes associated with AD neuropathology
- …