38 research outputs found
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Noncovalent interactions within a synthetic receptor can reinforce guest binding
Structural and thermodynamic data are presented on the binding properties of anion receptors containing two covalently linked cyclopeptide subunits that bind sulfate and iodide anions with micromolar affinity in aqueous solution. A synchrotron X-ray crystal structure of the sulfate complex of one receptor revealed that the anion is bound between the peptide rings of the biscyclopeptide. Intimate intramolecular contacts between the nonpolar surfaces of the proline rings of the individual receptor moieties in the complex suggest that hydrophobic interactions within the receptor that do not directly involve the guest contribute to complex stability. This finding is supported by a microcalorimetric analysis of the solvent dependence of complex stability, which showed that increasing the water content of the solvent has only a weak influence on the Gibbs energy of binding. Hence, the increasing amount of energy required for desolvating the binding partners in solutions containing more water is almost compensated by the increasingly favorable hydrophobic interactions. Further observations that suggest that guest-induced intra-receptor interactions contribute to guest binding are (i) anion binding of a monomeric cyclopeptide lacking the covalent linkage between the two rings leads to the formation of 2:1 complexes; (ii) in the crystal structure of the 2:1 iodide complex of this monotopic receptor, a similar arrangement of the two cyclopeptide rings has been found as in the sulfate complex of the biscyclopeptide; (iii) complex formation of the monomeric cyclopeptide in aqueous solution is highly cooperative with a large stability constant corresponding to the formation of the 2:1 complexes from relatively instable 1:1 complexes; (iv) the monomeric cyclopeptide forms only 1:1 anion complexes in DMSO where hydrophobic interactions do not take place; and (v) introducing polar hydroxy groups on the proline rings of the monomeric cyclopeptide disrupts cooperativity causing the formation of only 1:1 complexes even in aqueous solution. Taken together these observations demonstrate that, in addition to direct receptor-substrate interactions, noncovalent interactions between the two subunits of such biscyclopeptides contribute significantly to anion complex stability. Reinforcement of molecular recognition through intra-receptor interactions should be an attractive new strategy to boost host-guest affinities
Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease
Chagas' disease is a debilitating and often fatal disease caused by the protozoan parasite Trypanosoma cruzi. The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The polyalcohol myo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent findings on some aspects of the molecular and cellular fate of inositol in T. cruzi life cycle are discussed and identified some points that could be targets for the development of parasite-specific therapeutic agents
Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells
Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i) both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175), and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii) treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii) the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv) treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v) drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion