7,770 research outputs found

    Intermittent reconnection and plasmoids in UV bursts in the low solar atmosphere

    Full text link
    Magnetic reconnection is thought to drive a wide variety of dynamic phenomena in the solar atmosphere. Yet the detailed physical mechanisms driving reconnection are difficult to discern in the remote sensing observations that are used to study the solar atmosphere. In this paper we exploit the high-resolution instruments Interface Region Imaging Spectrograph (IRIS) and the new CHROMIS Fabry-Perot instrument at the Swedish 1-m Solar Telescope (SST) to identify the intermittency of magnetic reconnection and its association with the formation of plasmoids in so-called UV bursts in the low solar atmosphere. The Si IV 1403A UV burst spectra from the transition region show evidence of highly broadened line profiles with often non-Gaussian and triangular shapes, in addition to signatures of bidirectional flows. Such profiles had previously been linked, in idealized numerical simulations, to magnetic reconnection driven by the plasmoid instability. Simultaneous CHROMIS images in the chromospheric Ca II K 3934A line now provide compelling evidence for the presence of plasmoids, by revealing highly dynamic and rapidly moving brightenings that are smaller than 0.2 arcsec and that evolve on timescales of order seconds. Our interpretation of the observations is supported by detailed comparisons with synthetic observables from advanced numerical simulations of magnetic reconnection and associated plasmoids in the chromosphere. Our results highlight how subarcsecond imaging spectroscopy sensitive to a wide range of temperatures combined with advanced numerical simulations that are realistic enough to compare with observations can directly reveal the small-scale physical processes that drive the wide range of phenomena in the solar atmosphere.Comment: Accepted for publication in Astrophysical Journal Letters. Movies are available at http://folk.uio.no/rouppe/plasmoids_chromis

    Optimum quantum dot size for highly efficient fluorescence bioimaging

    Get PDF
    Semiconductor quantum dots of few nanometers have demonstrated a great potential for bioimaging. The size determines the emitted color, but it is also expected to play an important role in the image brightness. In this work, the size dependence of the fluorescence quantum yield of the highly thermal sensitive CdTe quantum dots has been systematically investigated by thermal lens spectroscopy. It has been found that an optimum quantum yield is reached for 3.8-nm quantum dots. The presence of this optimum size has been corroborated in both one-photon excited fluorescence experiments and two-photon fluorescence microscopy of dot-incubated cancer cells. Combination of quantum yield and fluorescence decay time measurements supports that the existence of this optimum size emerges from the interplay between the frequency-dependent radiative emission rate and the size-dependent coupling strength between bulk excitons and surface trapping states

    CRISP Spectropolarimetric Imaging of Penumbral Fine Structure

    Full text link
    We discuss penumbral fine structure in a small part of a pore, observed with the CRISP imaging spectropolarimeter at the Swedish 1-m Solar Telescope (SST), close to its diffraction limit of 0.16 arcsec. Milne-Eddington inversions applied to these Stokes data reveal large variations of field strength and inclination angle over dark-cored penumbral intrusions and a dark-cored light bridge. The mid-outer part of this penumbra structure shows 0.3 arcsec wide spines, separated by 1.6 arcsec (1200 km) and associated with 30 deg inclination variations. Between these spines, there are no small-scale magnetic structures that easily can be be identified with individual flux tubes. A structure with nearly 10 deg more vertical and weaker magnetic field is seen midways between two spines. This structure is co-spatial with the brightest penumbral filament, possibly indicating the location of a convective upflow from below.Comment: Accepted for publication in ApJL 17 Oct 2008. One Figure adde

    Heat in optical tweezers

    Get PDF
    Laser-induced thermal effects in optically trapped microspheres and single cells have been investigated by Luminescence Thermometry. Thermal spectroscopy has revealed a non-localized temperature distribution around the trap that extends over tens of microns, in agreement with previous theoretical models. Solvent absorption has been identified as the key parameter to determine laser-induced heating, which can be reduced by establishing a continuous fluid flow of the sample. Our experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This has been corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. Minimum intracellular heating, well below the cytotoxic level (43 °C), has been demonstrated to occur for optical trapping with 820 nm laser radiation, thus avoiding cell damage

    Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function

    Get PDF
    The ribosomal protein L11 (RPL11) integrates different types of stress into a p53-mediated response. Here, we analyzed the impact of the ubiquitin-like protein SUMO on the RPL11-mouse double-minute 2 homolog-p53 signaling. We show that small ubiquitin-related modifier (SUMO)1 and SUMO2 covalently modify RPL11. We find that SUMO negatively modulates the conjugation of the ubiquitin-like protein neural precursor cell-expressed developmentally downregulated 8 (NEDD8) to RPL11 and promotes the translocation of the RP outside of the nucleoli. Moreover, the SUMO-conjugating enzyme, Ubc9, is required for RPL11-mediated activation of p53. SUMOylation of RPL11 is triggered by ribosomal stress, as well as by alternate reading frame protein upregulation. Collectively, our data identify SUMO protein conjugation to RPL11 as a new regulator of the p53-mediated cellular response to different types of stress and reveal a previously unknown SUMO-NEDD8 interplay.-El Motiam, A., Vidal, S., de la Cruz-Herrera, C. F., Da Silva-Alvarez, S., Baz-Martinez, M., Seoane, R., Vidal, A., Rodriguez, M. S., Xirodimas, D. P., Carvalho, A. S., Beck, H. C., Matthiesen, R., Collado, M., Rivas, C. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function

    Advances in prevention and therapy of neonatal dairy calf diarrhoea : a systematical review with emphasis on colostrum management and fluid therapy

    Get PDF
    Neonatal calf diarrhoea remains the most common cause of morbidity and mortality in preweaned dairy calves worldwide. This complex disease can be triggered by both infectious and non-infectious causes. The four most important enteropathogens leading to neonatal dairy calf diarrhoea are Escherichia coli, rota-and coronavirus, and Cryptosporidium parvum. Besides treating diarrhoeic neonatal dairy calves, the veterinarian is the most obvious person to advise the dairy farmer on prevention and treatment of this disease. This review deals with prevention and treatment of neonatal dairy calf diarrhoea focusing on the importance of a good colostrum management and a correct fluid therapy
    corecore