31 research outputs found

    Benefit with preventive noninvasive ventilation in subgroups of patients at high-risk for reintubation: a post hoc analysis.

    Get PDF
    Background: High-flow nasal cannula (HFNC) was shown to be non-inferior to noninvasive ventilation (NIV) for preventing reintubation in a general population of high-risk patients. However, some subgroups of high-risk patients might benefit more from NIV. We aimed to determine whether the presence of many risk factors or overweight (body mass index (BMI) ≥ 25 kg/m2) patients could have different response to any preventive therapy, NIV or HFNC in terms of reduced reintubation rate. Methods: Not pre-specified post hoc analysis of a multicentre, randomized, controlled, non-inferiority trial comparing NFNC and NIV to prevent reintubation in patients at risk for reintubation. The original study included patients with at least 1 risk factor for reintubation. Results: Among 604 included in the original study, 148 had a BMI ≥ 25 kg/m2. When adjusting for potential covariates, patients with ≥ 4 risk factors (208 patients) presented a higher risk for reintubation (OR 3.4 [95%CI 2.16–5.35]). Patients with ≥ 4 risk factors presented lower reintubation rates when treated with preventive NIV (23.9% vs 45.7%; P = 0.001). The multivariate analysis of overweight patients, adjusted for covariates, did not present a higher risk for reintubation (OR 1.37 [95%CI 0.82–2.29]). However, those overweight patients presented an increased risk for reintubation when treated with preventive HFNC (OR 2.47 [95%CI 1.18–5.15]). Conclusions: Patients with ≥ 4 risk factors for reintubation may benefit more from preventive NIV. Based on this result, HFNC may not be the optimal preventive therapy in overweight patients. Specific trials are needed to confirm these results.post-print916 K

    Early Tracheostomy for Managing ICU Capacity During the COVID-19 Outbreak: A Propensity-Matched Cohort Study

    Get PDF
    10 p.Background: During the first wave of the COVID-19 pandemic, shortages of ventilators and ICU beds overwhelmed health care systems. Whether early tracheostomy reduces the duration of mechanical ventilation and ICU stay is controversial. Research question: Can failure-free day outcomes focused on ICU resources help to decide the optimal timing of tracheostomy in overburdened health care systems during viral epidemics? Study design and methods: This retrospective cohort study included consecutive patients with COVID-19 pneumonia who had undergone tracheostomy in 15 Spanish ICUs during the surge, when ICU occupancy modified clinician criteria to perform tracheostomy in Patients with COVID-19. We compared ventilator-free days at 28 and 60 days and ICU- and hospital bed-free days at 28 and 60 days in propensity score-matched cohorts who underwent tracheostomy at different timings (≤ 7 days, 8-10 days, and 11-14 days after intubation). Results: Of 1,939 patients admitted with COVID-19 pneumonia, 682 (35.2%) underwent tracheostomy, 382 (56%) within 14 days. Earlier tracheostomy was associated with more ventilator-free days at 28 days (≤ 7 days vs > 7 days [116 patients included in the analysis]: median, 9 days [interquartile range (IQR), 0-15 days] vs 3 days [IQR, 0-7 days]; difference between groups, 4.5 days; 95% CI, 2.3-6.7 days; 8-10 days vs > 10 days [222 patients analyzed]: 6 days [IQR, 0-10 days] vs 0 days [IQR, 0-6 days]; difference, 3.1 days; 95% CI, 1.7-4.5 days; 11-14 days vs > 14 days [318 patients analyzed]: 4 days [IQR, 0-9 days] vs 0 days [IQR, 0-2 days]; difference, 3 days; 95% CI, 2.1-3.9 days). Except hospital bed-free days at 28 days, all other end points were better with early tracheostomy. Interpretation: Optimal timing of tracheostomy may improve patient outcomes and may alleviate ICU capacity strain during the COVID-19 pandemic without increasing mortality. Tracheostomy within the first work on a ventilator in particular may improve ICU availability

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    The merge of multimodal modes for facilitating target language comprehensibility

    No full text
    Multimodality involves different forms or modes of expression, among which we mainly find the visual, linguistic, spatial, aural and gestural modes. Even several studies have been conducted analyzing those modes, but separately, our point is that converging these modes in the same social interaction helps the participants to create meaning. Facilitating target language comprehensibility is a core practice based on strategies that the teacher makes use of with the aim of getting students to obtain a better understanding of the target language and to facilitate its meaning, it follows 3 stages, create comprehensible language, create context for comprehension and create comprehensible interaction. These 3 stages help educators to achieve significant interactions in the L2 classroom and converging the different multimodal modes while implementing this practice can improve the performance of the social interactions. Considering this, this study aimed to explore how the merge of multimodal modes facilitate target language comprehensibility. To achieve that, many research articles guided us during the investigation. For the data collection procedures an EFL class was analyzed, the participants were a pre-service teacher and his students when doing his teaching practices. The data collection method used was video viewing and to show the results we used transcriptions with the conversation analysis method (CA). The results of this investigation showed that merging the multimodal modes makes easier for students and teachers create meaning and facilitates target language comprehensibilityAcknowledgements ............................................................................................................... VAbstract ................................................................................................................................. VI1. Introduction ..................................................................................................................... 82. Theoretical Framework ................................................................................................. 102.1. Multimodality ........................................................................................................ 102.2. Facilitating target language comprehensibility: A core teaching practice ............. 113. Literature Review .......................................................................................................... 134. Methodology ................................................................................................................. 164.1. Type of study ......................................................................................................... 164.1.1. Case Study ...................................................................................................... 164.2. Context and participants ........................................................................................ 174.3. Data collection procedures ......................................................................................... 184.4. Data analysis .............................................................................................................. 185. Findings ......................................................................................................................... 215.1. Warm-Up Activity to Introduce a Topic ................................................................ 215.2. Presenting Local and Foreign Gastronomy ........................................................... 255.3. Classification Of Colombian and American Food ................................................. 326. Discussion ..................................................................................................................... 387. Conclusion ..................................................................................................................... 42Bibliography ......................................................................................................................... 43Appendix .............................................................................................................................. 45PregradoLicenciado(a) en Lenguas Extranjeras con Énfasis en InglésTrabajos de Investigación y/o Extensió

    Enhancing biological tissue structures visualization through polarimetric parameters

    No full text
    Polarimetrical imaging is a noninvasive optical technique of great interest in biophotonics since it has the capability of obtaining relevant information of biological samples, being useful, for instance, for the early detection of diseases or the classification of biological structures, both on animal and vegetal tissues. Different structures produce different outcomes when interacting with light due to their polarimetric properties such as depolarization, dichroism or retardance. An exhaustive polarimetric analysis of these characteristics can unveil the relation between the tissue inherent characteristics and its polarimetric response, enabling us to find the most appropriate polarimetric parameters to describe or study a sample. These polarimetric characteristics can be obtained through the experimental measurement of the Mueller matrix (M) of a sample, from which a range of different polarimetric observables, giving physical interpretation, can be deduced. By taking advantage of these parameters, we propose a study of the suitability of different groups of metrics for the contrast enhancement in biological tissues imaging, taking special attention on some depolarization metrics and some physical parameters such as the wavelength or the angle of incidence of the illumination light. The results obtained suggest the convenience of certain parameters which may be of interest in multiple biomedical scenarios such as pathology early detection or enhanced visualization of different structures for clinical applications

    Clinical validation of a capnodynamic method for measuring end-expiratory lung volume in critically ill patients

    No full text
    Rationale End-expiratory lung volume (EELV) is reduced in mechanically ventilated patients, especially in pathologic conditions. The resulting heterogeneous distribution of ventilation increases the risk for ventilation induced lung injury. Clinical measurement of EELV however, remains difficult. Objective Validation of a novel continuous capnodynamic method based on expired carbon dioxide (CO2) kinetics for measuring EELV in mechanically ventilated critically-ill patients. Methods Prospective study of mechanically ventilated patients scheduled for a diagnostic computed tomography exploration. Comparisons were made between absolute and corrected EELVCO2 values, the latter accounting for the amount of CO2 dissolved in lung tissue, with the reference EELV measured by computed tomography (EELVCT). Uncorrected and corrected EELVCO2 was compared with total CT volume (density compartments between − 1000 and 0 Hounsfield units (HU) and functional CT volume, including density compartments of − 1000 to − 200HU eliminating regions of increased shunt. We used comparative statistics including correlations and measurement of accuracy and precision by the Bland Altman method. Measurements and main results Of the 46 patients included in the final analysis, 25 had a diagnosis of ARDS (24 of which COVID-19). Both EELVCT and EELVCO2 were significantly reduced (39 and 40% respectively) when compared with theoretical values of functional residual capacity (p &lt; 0.0001). Uncorrected EELVCO2 tended to overestimate EELVCT with a correlation r2 0.58; Bias − 285 and limits of agreement (LoA) (+ 513 to − 1083; 95% CI) ml. Agreement improved for the corrected EELVCO2 to a Bias of − 23 and LoA of (+ 763 to − 716; 95% CI) ml. The best agreement of the method was obtained by comparison of corrected EELVCO2 with functional EELVCT with a r2 of 0.59; Bias − 2.75 (+ 755 to − 761; 95% CI) ml. We did not observe major differences in the performance of the method between ARDS (most of them COVID related) and non-ARDS patients. Conclusion In this first validation in critically ill patients, the capnodynamic method provided good estimates of both total and functional EELV. Bias improved after correcting EELVCO2 for extra-alveolar CO2 content when compared with CT estimated volume. If confirmed in further validations EELVCO2 may become an attractive monitoring option for continuously monitor EELV in critically ill mechanically ventilated patients. Trial registration: clinicaltrials.gov (NCT04045262).Correction in: CRITICAL CARE, Volume28, Issue1, 2024DOI10.1186/s13054-024-04984-2</p
    corecore