21 research outputs found

    Geographic distribution of the genera of the Tribe Oryzomyini (Rodentia: Cricetidae: Sigmodontinae) in South America: patterns of distribution and diversity

    Get PDF
    The Oryzomyini is the most diverse tribe of the sigmodontine (Cricetidae: Sigmodontinae) radiation, including 28 genera and about 130 species, with this diversity reflected in the ecological and morphological variation observed among members. There are many hypotheses to explain the emergence and diversification of the Sigmodontinae in South America, including areas of original differentiation (AOD). In this paper we provide information on the geographic distribution of all extant genera in the tribe Oryzomyini, organizing these data in a gazetteer that includes provenance (collection locality, state or province, country), elevation, and geographical coordenates. Distribution maps generated for all genera and species then serve as the starting point for testing patterns of geographic distribution and diversity, and especially the AOD hypothesis advocating origination in the northern Andes. Our results reveal considerable generic and specific richness and show that there are three general patterns of distribution, the Trans-Andean, Andean, and Cis-Andean. Moreover, different genera encompass distributions that are endemic, disjunct, or widely distributed, as well as those restricted by habitats in both forest and open areas. Recent phylogenetic hypotheses indicate that the distribution patterns of oryzomyines do not correlate with the major lineages of the inclusive clades; rather, each main lineage displays most of the biogeographic patterns described for the tribe as a whole. The northern Andes cannot be considered as AOD, since the most records for Oryzomyini are located in the Cis-Andes area. The northern Andes is the second region in number of species, while the Trans-Andean represents the third richest region in South America. Patterns of richness of the tribe are strongly concordant with several of the centers or regions of endemism described in the literature. Areas of high richness are located mainly in the Andes, followed in lesser degree by areas in the Guyanan Shield, Brazilian Atlantic and Amazon Forests, and Paraguayan Chaco

    Similar but different: Revealing the relative roles of species‐traits versus biome properties structuring genetic variation in South American marsh rats

    Full text link
    AimWetland habitats, and the ecological restrictions imposed by them, structure patterns of genetic variation in constituent taxa. As such, genetic variation may reflect properties of the specific biomes species inhabit, or shared life history traits among species may result in similar genetic structure. We evaluated these hypotheses jointly by quantifying the similarity of genetic structure in three South American marsh rat species (Holochilus), and test how genetic variation in each species relates to biome‐specific environmental space and historical stability.LocationSouth America.TaxonRodentia.MethodsUsing complementary analyses (Mantel tests, dbRDA, Procrustes, covariance structure of allele frequencies and environmental niche models [ENMs]) with 8,000–32,000 SNPs per species, we quantified the association between genomic variation and geographic and/or environmental differences.ResultsSignificant association between genetic variation and geography was identified for all species. Similarity in the strength of the association suggests connectivity patterns dictated by shared species‐traits predominate at the biome scale. However, substantial amounts of genetic variation are not explained by geography. Focusing on this portion of the variance, we demonstrate a significant quantitative association between genetic variation and the environmental space of a biome, and a qualitative association with varying regional stability. Specifically, historically stable areas estimated from ecological niche models are correlated with local levels of geographic structuring, suggesting that local biome‐specific histories affect population isolation/connectivity.Main conclusionsThese tests show that although species exhibit similar patterns of genetic variation that are consistent with shared natural histories, irrespective of inhabiting different wetland biomes, local biome‐specific properties (i.e. varying environmental conditions and historical stability) contribute to departures from equilibrium patterns of genetic variation expected by isolation by geographic distance. The reflection of these biome‐specific properties in the genetic structure of the marsh rats provides a window into the differences among South American wetlands with evolutionary consequences for their respective constituent assemblages.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149336/1/jbi13529.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149336/2/jbi13529_am.pd

    Sobre la distinción y disponibilidad de los nuevos taxones propuestos por Agnolin et al. 2019

    Get PDF
    Sobre la distinción y disponibilidad de los nuevos taxones propuestos por Agnolin et al. 2019. Recientemente, Agnolin et al. (2019) describieron 14 especies nuevas de mamíferos, incluyendo 12 roedores, un murciélago y un carnívoro, y una nueva subespecie de roedor. Además, estos autores propusieron varios otros actos nomenclatoriales: algunas formas nominales se eliminaron de las sinonimias y se hipotetizaron como especies distintas; se nombraron tres nuevos géneros, una subtribu y una tribu demamíferos. Revisamos todos los actos nomenclatoriales propuestos por Agnolin et al. (2019) y concluimos que las 14 nuevas especies y la nueva subespecie, así como las formas eliminadas de las sinonimias, deben tratarse como sinónimos de especies ya conocidas. Sugerimos lo mismo con respecto a los tres nuevos taxones supraespecí cos presentados por Agnolin et al. (2019), de los cuales dos no están disponibles ya que no cumplen con las disposiciones del Código Internacional de Nomenclatura Zoológica. Terminamos esta contribución criticando la forma en que Agnolin et al. (2019) realizaron su abordaje taxonómico.Recently, Agnolin et al. (2019) described 14 new species of mammals, including 12 rodents,one bat, and one carnivore, and one new subspecies of rodent. In addition, these authors proposed severalother nomenclatorial acts: some nominal forms were removed from synonymies and hypothesized as distinctspecies, at the time that three new genera, one subtribe, and one tribe of mammals were also named. Wereviewed the merits of all nomenclatorial acts proposed by Agnolin at al. (2019) and concluded that all 14new species and the new subspecies, as well as those forms removed from synonymies, should be treatedas synonyms of already known species. We suggest the same regarding the three new supraspecic taxapresented by Agnolin et al., two of which are not available as they fail to comply with the provisions of theInternational Code of Zoological Nomenclature. We end this contribution criticizing the way that mammaltaxonomy was approached by Agnolin et al. (2019).Fil: Teta, Pablo Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: D'elía, Guillermo. Universidad Austral de Chile; ChileFil: Jayat, Jorge Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gonçalves, Pablo Rodrigues. Universidade Federal do Rio de Janeiro; BrasilFil: Simoes Libardi, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; Argentina. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Oliveira, João Alves de. Universidade Federal do Rio de Janeiro. Museu Nacional; BrasilFil: Moratelli, Ricardo. Fundación Oswaldo Cruz; BrasilFil: Reis Percequillo, Alexandre. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Prado, Joyce Rodrigues do. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Ortiz, Pablo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Miguel Lillo; ArgentinaFil: Hurtado, Natali. Universidad Nacional de San Agustin; PerúFil: Schiaffini, Mauro Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales - Sede Esquel. Laboratorio de Investigaciones en Evolución y Biodiversidad; ArgentinaFil: Abreu Jr., Edson Fiedler de. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Chiquito, Elisandra Almeida. Instituto Nacional da Mata Atlântica; BrasilFil: Giménez, Analía Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales - Sede Esquel. Laboratorio de Investigaciones en Evolución y Biodiversidad; ArgentinaFil: Torres, Julio. Instituto de Investigación Biológica del Paraguay; Paragua

    Educação popular em saúde: desmistificando o pré-natal odontológico em um grupo de práticas corporais / Popular health education: demystifying dental prenatal care in a group of body practices

    Get PDF
    A educação em saúde bucal possui um forte potencial de modificação do quadro de saúde populacional, através de ações que objetivam a apropriação do conhecimento sobre o processo saúde-doença. O trabalho tem como objetivo relatar uma atividade de educação popular em saúde sobre o período gestacional e o pré-natal odontológico no grupo de práticas corporais do Centro de Saúde da Família Dr. Everton Francisco Mendes Mont’Alverne, no município de Sobral, Ceará. Trata-se de um relato de experiência de abordagem qualitativa descritiva. Através de metodologias participativas e reflexivas, foi possível um diálogo sobre o período gestacional e o pré-natal odontológico com diversas pessoas da comunidade, visando à transformação local na perspectiva de promoção da saúde. Desta maneira as participantes foram ouvidas e se sentiram reconhecidas como parte fundamental no processo de transmissão de saberes relacionado ao pré-natal na comunidade.

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    Taxonomic review of Aegialomys (Weksler, Percequillo & Voss, 2006) (Cricetidae: Sigmodontinae)

    No full text
    Aegialomys é membro da tribo Oryzomyini, e se distribui ao longo dos ambientes abertos, a oeste do Peru e do Equador, incluindo o Arquipélago de Galápagos. Esse gênero, recentemente descrito, é constituído por duas espécies: A. galapagoensis e A. xanthaeolus. Contudo, informações recentes sugerem a existência de uma espécie não descrita na região do Equador. Esse fato, juntamente com questões levantadas na literatura a respeito do status taxonômico de Oryzomys xanthaeolus ica, e algumas reservas sobre Oryzomys baroni, motivou a revisão taxonômica desse grupo. Dentro desse contexto, o presente estudo descreveu os padrões de variação da amostra, buscando caracterizar os táxons, em termos morfológicos e morfométricos, descrever sua variação intra e interespecífica, atribuir nomes válidos a todas as espécies e estabelecer a distribuição geográfica de cada espécie reconhecida, bem como a relação de parentesco. Para tanto, foram estudadas coleções científicas nos Estados Unidos, na Inglaterra e no Peru. As análises morfométricas (estatística uni e multivariada) e morfológicas (frequência dos caracteres) foram conduzidas em indivíduos adultos e de ambos os sexos. Os caracteres morfométricos consistiram em dimensões corpóreas e crânio-dentárias. As normalidades univariadas dos dados foram testadas. Em um primeiro momento, foi apresentado o histórico taxonômico do gênero; em seguida, um catálogo sitematizado com informações sobre os tipos das espécies. A distribuição de Aegialomys no continente está limitada por Esmeraldas (Prov. de Esmeraldas, Equador), ao norte; por Hacienda Checayani, Azangaro (Depto. de Puno, Peru), ao sul e a leste; e pela costa a oeste. O gênero é encontrado em uma ilha próxima ao continente, chamada Isla Puna, e no Arquipélago de Galápagos. As análises morfológicas e morfométricas revelaram que os espécimes examinados são similares em seus caracteres externos, cranianos e dentários, independentemente da sua origem geográfica. Entretanto, morfológicamente constatou-se algumas variações com sentido geográfico para caracteres como a coloração dorsal, a coloração ventral, a posição do lacrimal, o tamanho do palato, a presença de flexo no anterocone do M1, e no anteroconídeo e morfometricamente, observamos um acentuado acréscimo nas dimensões cranianas, no sentido norte-sul da distribuição. Unindo dados morfológicos e morfometricos reconhece-se a existência de três grupos distintos - o norte, o sul e Galápagos, aos quais os nomes A. xanthaeolus, A. baroni e A. galapagoensis, foram designados respectivamente. No padrão geral das amostras, o agrupamento Galápagos se mostra mais similar às amostras do sul. Todavia, uma característica importante é compartilhada entre os indivíduos de Galápagos e os do grupo norte, que é a presença de flexo de anterocone e no anteroconídeo. O limite de distribuição das espécies continentais foi concordante com a zona de transição climática existente no sul do Equador e norte do Peru, onde o clima passa da caracterização úmida para árida, e também com dados relacionados às áreas de endemismo e barreiras para a dispersão de fauna encontrada também para outros grupos de vertebrados. A relação de parentesco entre as espécies foi estabelecida com base em uma filogenia morfológica, revelando que as espécies continentais são mais proximamente relacionadas entre si do que com A. galapagoensis.Aegialomys is a member of Oryzomyini tribe that occurs through the open habitats, west of the Ecuadorian and Peruvian Andes, including the Galapagos Archipelago. This genus, recently described, consists of two species, A. galapagoensis and A. xanthaeolus. Nevertheless, additional information suggests there is one undescribed species in the Ecuadorian region. This fact, along with questions raised in the literature regarding the taxonomic status of Oryzomys xanthaeolus ica, and some reserves about Oryzomys baroni, has motivated a taxonomic review of this group. Within this context the present study describes the patterns of variation of the available samples, in order to characterize the taxa on morphologic and morphometric aspects; to describe the intra and interspecific variation; to assign the valid and available names to all valid taxa; and to establish the geographic distribution of each recognized species, and the kinship. In order to achieve these goals, I studied specimens housed at several scientific collections in the United States, England and Peru. Morphometric (univariate and multivariate statistical analyses) and morphologic (character-state frequencies) analyses were conducted in adult specimens, employing both sexes. The morphometric characters consisted of body dimensions and skull and molar measurements. Univariate normality was tested. At first, I present the genus taxonomic history and a systematic catalog with information regarding the type material of each nominal taxa. The distribution of Aegialomys in the continent is limited by Esmeraldas (Province of Esmeraldas, Ecuador) to the north; by the Hacienda Checayani, Azangaro (Depto. De Puno, Peru) to the south and west; and by the coast to the west. The genus is also found in a continental island close to the continent, Isla Puna, and inoceanic islands that form the Galapagos Archipelago. The morphometric and morphologic data revealed that the specimens examined are similar in some of their external, cranial and dental characters, independently of its geographical origin; however, I notice some variations related to the geography in characters like the dorsal and ventral color, lacrimal position, palate length, presence of anterocone flexus in M1, and presence of anteroconid flexus in M1. A pronounced addition in cranial dimensions is observed through north-south distribution, which revealed the existence of three distinct clusters: North, South and Galapagos of which the names A. xanthaeolus, A. baroni and A. galapagoensis was designated respectively. The samples of Galapagos exhibit morphometric and morphologically similarity to the South samples; however, an important character is shared among the individuals of Galapagos and North cluster, which is the presence of anterocone and anteroconid flexus. The distribution limits of continental species were consistent with the existing climate transition zone in southern Ecuador and northern Peru, where the climate changes from wet to dry, and also consistent with data related to the areas of endemism and barriers to the faunal dispersion reported for other vertebrate groups. The kinship among the species was established based on a morphological phylogeny, revealing that the continental species are more closely related to each other than with A. galapagoensis

    Estudos evolutivos dos ratos do brejo da América do Sul (Rodentia: Holochilus)

    No full text
    An interdisciplinary approach integrating micro and macroevolution, genomic, morphometric and morphological variation, systematics, quantitative genetics, and biogeography was employed to investigate the evolutionary history of the genus Holochilus (Rodentia: Sigmodontinae). Holochilus presents poorly defined species, with nomenclatural problems and phylogenetic relationships on species level unknown. The current species number possibly does not reflect its real diversity, and no work combining genetic and morphometric evidences from all its geographic range was performed. This genus belongs to the tribe Oryzomyini, and along with other 14 genera constitute the Oryzomyini clade D, the most comprehensive generic diversity of the tribe, occupying distinct environments. The internal phylogenetic relationship within this clade is still unclear and variable. Due to its broad geographic distribution, Holochilus also represents a key piece on the study of the evolution of oryzomines of open formations of South America. Based on a comprehensive sampling, I analyzed patterns of morphometric and genomic variation within Holochilus, in order to delimit the species belonging to this genus, as well as access the phylogenetic relationship between these lineages. I investigated the sexual and ontogenetic variation in this group, comparing natural and captive populations, seeking for understand the effect of the environmental differences in the pattern of variation and ontogenetic trajectories (Chapter 1). I also evaluated and compared the genomic variation among three species of Holochilus to verify the influence of the biomes and the climatic changes in the genomic signatures (Chapter 2). I applied a model-based approach to delimit species (Chapter 3). And finally, additional investigations were made to propose the phylogenetic relationship between members of clade D, and provide date intervals for the main diversifications events, as well as the possible process responsible for the biogeographic pattern current observed related with the forest and open areas occupation (Chapter 4). Sexual dimorphism exhibited small degree of variation among populations. The greater ontogenetic variation is found in the younger age classes, but oldest individuals also show larger degree of differentiation. There are also great differences in the ontogenetic trajectories among samples, where individuals from the captive population exhibited the lower degree of variation between all age classes. The quantitative genetic analysis showed that genomic differences are observed across the taxa, and it was associated with geography. Ecological niche models revealed that biomes with larger areas of stability also presented more genomic structure, suggesting that historical dimension impacted population isolation/connectivity. Results also shows that biomes not only differ geographically and environmentally (based on past climatic conditions), but also show significant association between the environmental space and the genetic variation that is not related with geography. Eight independent lineages within Holochilus were recovered, and the phylogenetic arrangement partially corroborates previous studies. Finally, the phylogeny proposed for the clade D presented some differences in comparisons with other previously reported, and suggest that most of the cladogenetic events happened during the Pleistocene, being the expansion of open environments an important driver of diversification in this group.Uma abordagem interdisciplinar integrando micro e macroevolução, variação genômica, morfométrica e morfológica, sistemática, genética quantitativa e biogeografia foi empregada para investigar a história evolutiva do gênero Holochilus (Rodentia: Sigmodontinae). O gênero Holochilus apresenta espécies mal definidas, com problemas nomenclaturais e relações desconhecida. O número atual de espécies possivelmente não reflete a sua diversidade real e, até o momento, não foi realizado nenhum trabalho combinando evidências genéticas e morfométricas englobando toda a distribuição geográfica desse grupo. Este gênero pertence à tribo Oryzomyini, e juntamente com outros 14 gêneros (a diversidade genérica mais abrangente da tribo) formam o clado D. A relação filogenética interna dentro deste clado ainda é variável. Devido à sua ampla distribuição geográfica, Holochilus também representa uma peça chave no estudo da evolução dos oryzomíneos de formações abertas da América do Sul. Com base em uma amostragem abrangente, analisei padrões de variação morfométrica e genômica dentro de Holochilus, a fim de delimitar as espécies pertencentes a este gênero, bem como acessar a relação filogenética entre essas linhagens. Investiguei a variação sexual e ontogenética deste grupo, comparando populações naturais e de cativeiro, buscando entender o efeito das diferenças ambientais no padrão de variação e nas trajetórias ontogenéticas (Capítulo 1). Eu também avaliei e comparei a variação genômica entre três espécies de Holochilus a fim de verificar a influência dos biomas e das mudanças climáticas nas assinaturas genômicas das espécies (Capítulo 2). Em seguida eu apliquei uma abordagem baseada em modelos para delimitar as espécies (Capítulo 3). Finalmente, investigações adicionais foram realizadas para propor as relações filogenéticas entre os membros do clade D, fornecendo datas para os principais eventos de diversificação, e inferências sobre possíveis processos responsáveis pelo padrão biogeográfico atual, relacionado os mesmos com a ocupação florestal e áreas abertas (Capítulo 4). O dimorfismo sexual apresentou pequeno grau de variação entre as populações. A maior variação ontogenética é encontrada nas classes etárias mais jovens e mais velhas. Há também grandes diferenças nas trajetórias ontogenéticas entre as amostras, onde indivíduos da população cativeiro exibiram o menor grau de variação entre todas as classes etárias. A análise genética quantitativa mostrou que diferenças genômicas são observadas em todos os táxons e essa diferença está associada à geografia. Modelos de nichos ecológicos revelaram que os biomas com maiores áreas de estabilidade também apresentaram maior estruturação genômica, sugerindo que uma dimensão histórica impactou o isolamento/conectividade entre as populações. Os resultados também mostram que os biomas não só diferem geograficamente e ambientalmente (baseado em condições climáticas passadas), mas também mostram associação significativa entre o espaço ambiental e a variação genética que não está relacionada com a geografia. Adicionalmente, foi recuperado oito linhagens independentes dentro de Holochilus, e o arranjo filogenético parcialmente corrobora estudos anteriores. Finalmente, a filogenia proposta para o clado D apresentou algumas diferenças em comparação com outros estudos, e sugeriu que a maioria dos eventos cladogenéticos ocorreram durante o Pleistoceno, sendo a expansão dos ambientes abertos um importante motor de diversificação neste grupo

    Systematic studies of the genus Aegialomys Weksler, Percequillo and Voss, 2006 (Rodentia: Cricetidae: Sigmodontinae): Annotated catalogue of the types of the species-group taxa

    No full text
    Prado, Joyce Rodrigues Do, Percequillo, Alexandre Reis (2016): Systematic studies of the genus Aegialomys Weksler, Percequillo and Voss, 2006 (Rodentia: Cricetidae: Sigmodontinae): Annotated catalogue of the types of the species-group taxa. Zootaxa 4144 (4): 477-498, DOI: http://doi.org/10.11646/zootaxa.4144.4.

    Datasets for Dalapicolla et al., 2024. Phylogenomics and species delimitation of an abundant and little-studied Amazonian forest spiny rat. Molecular Phylogenetics and Evolution, 107992.

    No full text
    All scripts are available at https://github.com/jdalapicolla/SpeciesDelimitationPermits: SISBIO[#14419-3] and SISGEN [#A58279D]GENOMIC DATA:VCF: proechimys.vcf.gz and proechimys.vcf.gz.tbiLoci data: proechimys_184ind_ipyrad.7zNexus Alignments for SVDQuartets: proechimys_complete_svd_final_speciestrees.nex (complete dataset); proechimys_subset1_svd_indtree.nex (Subset 1); proechimys_subset2_svd_speciestree.nex (Subset 2);Phylip alignments for IQTree: proechimys_MPE1_184.phylip (complete dataset); proechimys_subset1.phylip (Subset 1); proechimys_subset2.phylip (Subset 2).SUPPLEMENTARY MATERIALAppendix A: A brief taxonomic history of the genus Proechimys.Appendix B: Summary of mitochondrial DNA (mtDNA) data available for the genus Proechimys.Appendix C: Details on SNPs calling and filtering steps used in genomic data.Appendix D: Details on repeatability and filtering steps used in morphometric data.Appendix E: Comments on the nomenclatural decisions regarding the species-group taxa of the genus Proechimys.Table S1: Samples used in the genomics analyses.Table S2: Morphometric data consisting of raw values for 22 morphometric variables.Table S3: RAD processing results for 184 genomic samples.Table S4: ICC test for cranial measurements with upper and lower values for the confidence interval.Table S5: Posterior probabilities (PP) found in all demographic scenarios in the iBP&P analyses.Table S6: Patterson’s D (ABBA-BABA), and related statistics.Table S7: Divergence times in millions of years ago (Ma) for the species tree of Proechimys.Table S8: Available cytogenetic, mtDNA, and nuDNA data in the literature for delimited species of Proechimys.Figure S1: Geographical distribution of genomic samples.Figure S2: Geographical distribution of morphometric samples.Figure S3: The 29 cranial measurements with their respective acronyms.Figure S4: Details of clade A in the individual phylogenetic tree.Figure S5: Details of clade B in the individual phylogenetic tree.Figure S6: Details of clade C, D, E, F and G in the individual phylogenetic tree.Figure S7: Partitions used in iBP&P.Figure S8: Species tree and IQTree2 using 17,162 unlinked SNPs subset 2.Figure S9: The branch-specific statisticfb(F-branch).</p
    corecore