98 research outputs found

    Synthesis, Characterisation and Functionalisation of Magnetic Nanoparticles for Biomedical Applications

    Get PDF
    Nanotechnology is a relatively new interdisciplinary field to which much attention has been paid for the last years. It involves researchers from very different areas: Chemistry, Physics, Biology, Biochemistry, Chemical Engineering, Materials Science or Medicine. In the interface of all these disciplines lay the possibility to tackle new challenges, unthinkable a few years ago [Klabunde2001]. Nanoscience has opened many possibilities in most technology areas, unreachable so far. It is devoted to the studies of phenomena at the nanoscale, that is, the limit “where the smallest man-made devices meet the atoms and molecules of the natural world” [Wong1999]. Nanoscience is based on the fabrication and characterization of nanostructured, or nanophase systems. These can be three- dimensional: nanoparticles or nanospheres, two-dimensional: thin films, or one- dimensional: quantum dots. The nanoscale regime is a very special point in the length scale, at which the classical laws of physics are not suitable for the explanation of many phenomena, so quantum approaches are needed. Significant changes in the chemical and physical properties of materials take place at the limit at which the interactions correlation length (electrical, magnetic, crystalline...) is of the same order of magnitude of the system size. That opens new possibilities for the development of smart new functional materials, like improved catalysts, polymers, ceramics, tissues, solid state medicines or drug carriers..

    Superconducting density of states at the border of an amorphous thin film grown by focused-ion-beam

    Full text link
    We present very low temperature Scanning Tunneling Microscopy and Spectroscopy (STM/S) measurements of a W based amorphous thin film grown with focused-ion-beam. In particular, we address the superconducting properties close to the border, where the thickness of the superconducting film decreases, and the Au substrate emerges. When approaching the Au substrate, the superconducting tunneling conductance strongly increases around the Fermi level, and the quasiparticle peaks do not significantly change its position. Under magnetic fields, the vortex lattice is observed, with vortices positioned very close to the Au substrate.Comment: To appear in Journal of Physics: Conference serie

    Some pleural effusions labeled as idiopathic could be produced by the inhalation of silica

    Get PDF
    Objectives: Exposure to silica nanoparticles has been associated with pleural effusions (PEs) in animal models and case series. We hypothesized that some PEs labelled as “idiopathic” could, in fact, be secondary to inhalation of silica. Methods: A retrospective case control study was designed utilizing a prospectively maintained pleural database. Cases, represented by idiopathic PEs, were matched by age and gender to control patients who had been diagnosed with malignant, cardiac, or infectious PEs. A survey consisting of questions about occupational life and possibility of silica inhalation was conducted. In a subgroup of patients, pleural fluid concentrations of silica were quantified by plasma atomic emission spectrometry analysis. Also, the pleural biopsy of a silica-exposed case was subjected to an energy dispersive X-ray spectroscopy (EDX) to identify the mineral, the size of which was determined by electron microscopy. Results: A total of 118 patients (59 cases and 59 controls) completed the survey. There were 25 (42%, 95% CI 31–55%) and 13 (22%, 95% CI 13–34%) silica-exposed workers in case and control groups, respectively. The exposure attributable fraction was 0.62 (95% CI 0.14–0.83). Four of eight exposed cases showed detectable levels of silica in the pleural fluid (mean 2.37 mg/L), as compared to none of 16 tested controls. Silica nanoparticles of 6–7 nm were identified in the pleural biopsy of an exposed case patient. Conclusions: It is plausible that some idiopathic PEs could actually be caused by occupational silica inhalation

    Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation

    Get PDF
    Metabotropic glutamate receptors (mGluR) are present in cells of the nervous system, where they are activated by one of the main neurotransmitters, glutamate. They are also expressed in cells outside the nervous system. We identified and characterized two receptors belonging to group I mGluR, mGlu1R and mGlu5R, in human cell lines of lymphoid origin and in resting and activated lymphocytes from human peripheral blood. Both are highly expressed in the human Jurkat T cell line, whereas mGlu5R is expressed only in the human B cell line SKW6.4. In blood lymphocytes, mGlu5R is expressed constitutively, whereas mGlu1R is expressed only upon activation via the T cell receptor-CD3 complex. Group I receptors in the central nervous system are coupled to phospholipase C, whereas in blood lymphocytes, activation of mGlu5R does not trigger this signaling pathway, but instead activates adenylate cyclase. On the other hand, mGlu5R does not mediate ERK1/2 activation, whereas mGlu1R, which is coupled neither to phospholipase C nor to calcium channels and whose activation does not increase cAMP, activates the mitogen-activated protein kinase cascade. The differential expression of mGluR in resting and activated lymphocytes and the different signaling pathways that are triggered when mGlu1Rs or mGlu5Rs are activated point to a key role of glutamate in the regulation of T cell physiological function. The study of the signaling pathways (cAMP production and ERK1/2 phosphorylation) and the proliferative response obtained in the presence of glutamate analogs suggests that mGlu1R and mGlu5R have distinct functions. mGlu5R mediates the reported inhibition of cell proliferation evoked by glutamate, which is reverted by the activation of inducible mGlu1R. This is a novel non-inhibitory action mechanism for glutamate in lymphocyte activation. mGlu1R and mGlu5R thus mediate opposite glutamate effects in human lymphocytes

    Block copolymer-based magnetic mixed matrix membranes-effect of magnetic field on protein permeation and membrane fouling

    Get PDF
    In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2, 3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes

    Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the application of nanotechnology in several fields of bioscience and biomedicine has been studied. The use of nanoparticles for the targeted delivery of substances has been given special attention and is of particular interest in the treatment of plant diseases. In this work both the penetration and the movement of iron-carbon nanoparticles in plant cells have been analyzed in living plants of <it>Cucurbita pepo</it>.</p> <p>Results</p> <p>The nanoparticles were applied <it>in planta </it>using two different application methods, injection and spraying, and magnets were used to retain the particles in movement in specific areas of the plant. The main experimental approach, using correlative light and electron microscopy provided evidence of intracellular localization of nanoparticles and their displacement from the application point. Long range movement of the particles through the plant body was also detected, particles having been found near the magnets used to immobilize and concentrate them. Furthermore, cell response to the nanoparticle presence was detected.</p> <p>Conclusion</p> <p>Nanoparticles were capable of penetrating living plant tissues and migrating to different regions of the plant, although movements over short distances seemed to be favoured. These findings show that the use of carbon coated magnetic particles for directed delivery of substances into plant cells is a feasible application.</p

    Nanoscale superconducting properties of amorphous W-based deposits grown with focused-ion-beam

    Full text link
    We present very low temperature Scanning Tunneling Microscopy and Spectroscopy (STM/S) measurements in W-based amorphous superconducting nanodeposits grown using a metal-organic precursor and focused-ion-beam. The superconducting gap closely follows s-wave BCS theory, and STS images under magnetic fields show a hexagonal vortex lattice whose orientation is related to features observed in the topography through STM. Our results demonstrate that the superconducting properties at the surface of these deposits are very homogeneous, down to atomic scale. This, combined with the huge nanofabrication possibilities of the focused-ion-beam technique, paves the way to use focused-ion-beam to make superconducting circuitry of many different geometries

    Magnetic nanoparticles penetration and transport in planta

    Get PDF
    Resumen del póster presentado en la 9th International Conference on the Scientific and Clinical Applications of Magnetic Carriers, celebrada en Minneapolis (Estados Unidos) del 22 al 26 de mayo de 2012.Magnetic nanoparticles are very suitable for a broad range of applications, like those involving synthesis and use of ferrofluids for bio-applications in general. In medicine the aim is to use them in diagnosis as well as in therapy. The ongoing research and results obtained up to now in these fields open a wide range of possibilities for using magnetic nanoparticles in other disciplines, for example in general plant research and agronomy. To study the use of nanoparticles in agriculture the first stage is to work out the penetration and transport into living plants and plant cells. We present here an overview of the research carried out within the scope of an interdisciplinary collaboration, on how inorganic nanoparticles interact with plant cells and tissues.

    Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product

    Get PDF
    The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron–cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m−3 by tuning the Co content in the metal precursor.This work was supported by EU-H2020 AMPHIBIAN Project (no. 720853) and by European Union's Horizon 2020 research and innovation programme under grant agreement no. 823717-ESTEEM3.Peer reviewe

    MoS2 photoelectrodes for hydrogen production: Tuning the S-vacancy content in highly homogeneous ultrathin nanocrystals

    Full text link
    Tuning the electrocatalytic properties of MoS2 layers can be achieved through different paths, such as reducing their thickness, creating edges in the MoS2 flakes, and introducing S-vacancies. We combine these three approaches by growing MoS2 electrodes by using a special salt-assisted chemical vapor deposition (CVD) method. This procedure allows the growth of ultrathin MoS2 nanocrystals (1-3 layers thick and a few nanometers wide), as evidenced by atomic force microscopy and scanning tunneling microscopy. This morphology of the MoS2 layers at the nanoscale induces some specific features in the Raman and photoluminescence spectra compared to exfoliated or microcrystalline MoS2 layers. Moreover, the S-vacancy content in the layers can be tuned during CVD growth by using Ar/H2 mixtures as a carrier gas. Detailed optical microtransmittance and microreflectance spectroscopies, micro-Raman, and X-ray photoelectron spectroscopy measurements with sub-millimeter spatial resolution show that the obtained samples present an excellent homogeneity over areas in the cm2 range. The electrochemical and photoelectrochemical properties of these MoS2 layers were investigated using electrodes with relatively large areas (0.8 cm2). The prepared MoS2 cathodes show outstanding Faradaic efficiencies as well as long-term stability in acidic solutions. In addition, we demonstrate that there is an optimal number of S-vacancies to improve the electrochemical and photoelectrochemical performances of MoS2PID2021-126098OB-I00, PID2020-116619GA-C22, TED2021-131788A-I00, SI3/PJI/2021-0050
    corecore