7,345 research outputs found

    A 64-channel inductively-powered neural recording sensor array

    Get PDF
    This paper reports a 64-channel inductively powered neural recording sensor array. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements a local auto-calibration mechanism which configures the transfer characteristics of the recording site. The system has two operation modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are transmitted. Data streams coming from the channels are serialized by an embedded digital processor and transferred to the outside by means of the same inductive link used for powering the system. Simulation results show that the power consumption of the complete system is 377μW.Ministerio de Ciencia e Innovación TEC2009-0844

    A power efficient neural spike recording channel with data bandwidth reduction

    Get PDF
    This paper presents a mixed-signal neural spike recording channel which features, as an added value, a simple and low-power data compression mechanism. The channel uses a band-limited differential low noise amplifier and a binary search data converter, together with other digital and analog blocks for control, programming and spike characterization. The channel offers a self-calibration operation mode and it can be configured both for signal tracking (to raw digitize the acquired neural waveform) and feature extraction (to build a first-order PWL approximation of the spikes). The prototype has been fabricated in a standard CMOS 0.13μm and occupies 400μm×400μm. The overall power consumption of the channel during signal tracking is 2.8μW and increases to 3.0μW average when the feature extraction operation mode is programmed.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    A comparative study of quantitative methods in ore microscopy: digital image analysis vs. point counter device

    Get PDF
    Quantitative mineralogical analyses of metallic concentrates from an ore-processing plant with reflected light microscopy have been carried out independently, on the same samples, by an expert mineralogist using a point counter device (PCD), and by digital image analysis (DIA) operated by a post-graduate student in order to compare the performance and results obtained with both methods

    IPSC differentiation into ependymal progenitors to treat ventricular damage during hydrocephalus

    Get PDF
    Introduction: During both obstructive congenital hydrocephalus and post-hemorrhagic hydrocephalus additional pathological events are intimately associated with their ethiology: a) a detrimental inflammatory response; b) severe damage of the underlying periventricular nervous tissue, including white matter, and c). Therapeutic approaches have been directed to overcome a) and b), however recovery of damaged neuroepithelium/ependyma is, in our present, an important therapeutic gap. Methods: Human and mouse induced pluripotent stem cells (iPSC) have been artificially differented into ependymal progenitors. Intracerebroventricular (ICV) injections of iPCS are performed ex vivo and in vivo in the damaged ventricular wall. Their integration and differentiation has been studied by immunohistochemistry and histopathological analysis. Results: Mice and human ependymal progenitors are able to integrate and differentiate into ependyma in damaged ventricular wall. Stage of ependymal differentiation by the time of the injection defined different degrees of integration. Conclusions: IPSC appear to be a good ependymal progenitor source with no ethical controversy associated.RyC 2014-16980 Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Effects of wet/dry-cycling and plasma treatments on the properties of flax nonwovens intended for composite reinforcing

    Get PDF
    Producción CientíficaThis research analyzes the effects of different treatments on flax nonwoven (NW) fabrics which are intended for composite reinforcement. The treatments applied were of two different kinds: a wet/dry cycling which helps to stabilize the cellulosic fibers against humidity changes and plasma treatments with air, argon and ethylene gases considering different conditions and combinations, which produce variation on the chemical surface composition of the NWs. The resulting changes in the chemical surface composition, wetting properties, thermal stability and mechanical properties were determined. Variations in surface morphology could be observed by scanning electron microscopy (SEM). The results of the X-ray photoelectron spectroscopy (XPS) showed significant changes to the surface chemistry for the samples treated with argon or air (with more content on polar groups on the surface) and ethylene plasma (with less content of polar groups). Although only slight differences were found in moisture regain and water retention values (WRV), significant changes were found on the contact angle values, thus revealing hydrophilicity for the air-treated and argon-treated samples and hydrophobicity for the ethylene-treated ones. Moreover, for some of the treatments the mechanical testing revealed an increase of the NW breaking force.Ministerio de Educación y Formación Profesional (grants BIA2014-59399-R and FPU12/05869

    Numerical differentiation for non-trivial consistent tangent matrices: an application to the MRS-lade model

    Get PDF
    In a companion paper Pérez-Foguet, A., Rodríguez-Ferran, A. and Huerta, A. Numerical differentiation for local and global tangent operators in computational plasticity. Computer Methods in Applied Mechanics and Engineering, 2000, in press, the authors have shown that numerical differentiation is a competitive alternative to analytical derivatives for the computation of consistent tangent matrices. Relatively simple models were treated in that reference. The approach is extended here to a complex model: the MRS-Lade model. This plastic model has a cone-cap yield surface and exhibits strong coupling between the flow vector and the hardening moduli. Because of this, differentiating these quantities with respect to stresses and internal variables - the crucial step in obtaining consistent tangent matrices - is rather involved. Numerical differentiation is used here to approximate these derivatives. The approximated derivatives are then used to (1) compute consistent tangent matrices (global problem) and (2) integrate the constitutive equation at each Gauss point (local problem) with the Newton-Raphson method. The choice of the stepsize (i.e. the perturbation in the approximation schemes), based on the concept of relative stepsize, poses no difficulties. In contrast to previous approaches for the MRS-Lade model, quadratic convergence is achieved, for both the local and the global problems. The computational efficiency (CPU time) and robustness of the proposed approach is illustrated by means of several numerical examples, where the major relevant topics are discussed in detail

    Numerical differentiation for non-trivial consistent tangent matrices: an application to the MRS-lade model

    Get PDF
    In a companion paper Pérez-Foguet, A., Rodríguez-Ferran, A. and Huerta, A. Numerical differentiation for local and global tangent operators in computational plasticity. Computer Methods in Applied Mechanics and Engineering, 2000, in press, the authors have shown that numerical differentiation is a competitive alternative to analytical derivatives for the computation of consistent tangent matrices. Relatively simple models were treated in that reference. The approach is extended here to a complex model: the MRS-Lade model. This plastic model has a cone-cap yield surface and exhibits strong coupling between the flow vector and the hardening moduli. Because of this, differentiating these quantities with respect to stresses and internal variables - the crucial step in obtaining consistent tangent matrices - is rather involved. Numerical differentiation is used here to approximate these derivatives. The approximated derivatives are then used to (1) compute consistent tangent matrices (global problem) and (2) integrate the constitutive equation at each Gauss point (local problem) with the Newton-Raphson method. The choice of the stepsize (i.e. the perturbation in the approximation schemes), based on the concept of relative stepsize, poses no difficulties. In contrast to previous approaches for the MRS-Lade model, quadratic convergence is achieved, for both the local and the global problems. The computational efficiency (CPU time) and robustness of the proposed approach is illustrated by means of several numerical examples, where the major relevant topics are discussed in detail.Peer ReviewedPostprint (author’s final draft

    Numerical differentiation for local and global tangent operators in computational plasticity

    Get PDF
    CIMNE - PI 144In this paper, numerical differentiation is applied to integrate plastic constitutive laws and to compute the corresponding consistent tangent operators. The deriva- tivesoftheconstitutive equationsareapproximatedbymeansofdifferenceschemes. These derivatives are needed to achieve quadratic convergence in the integration at Gauss-point level and in the solution of the boundary value problem. Numerical differentiation is shown to be a simple, robust and competitive alternative to an- alytical derivatives. Quadratic convergence is maintained, provided that adequate schemes and stepsizes are chosen. This point is illustrated by means of some nu- merical examples.Peer ReviewedPreprin
    corecore