8 research outputs found

    Spectroscopic observations of comet Austin (1989c)

    Get PDF
    Longslit CCD spectra (lambda = 5100-6400 A, delta(lambda) approximately 3 A) were obtained with the Michigan-Dartmouth-MIT 1.3 meter telescope in May 1990 (r = 0.74 AU, delta = 0.50 AU). The spectra were reduced with the Interactive data Reduction and Analysis Facility (IRAF). Spectral extractions offset sunward and tailward from the nucleus were analyzed. Species identified in the spectra include the following: C2, NH2(10-0), NH2(9-0), H2O(+), and CO(+). Spatial extractions of rotational line intensities in the NH2(10-0) band extend approximately 10(exp 4.5) km from the nucleus. A fit of the vectorial model to the NH2(10-0) spatial profile is consistent with an NH3 parent molecule. The NH2 production rate and an ammonia to water abundance ratio, NH3/H2O approximately 3 percent, were derived. The ammonia abundance obtained for comet Austin is consistent with that found for several other comets and is indicative of comet formation under very homogeneous conditions

    Long slit spectroscopy of NH2 in comets Halley, Wilson, and Nishikawa-Takamizawa-Tago

    Get PDF
    Long-slit spectra of comets Halley, Wilson and Nishikawa-Takamizawa-Tago were obtained with the 3.9 meter Anglo-Australian Telescope. Spectra of comets Halley and Wilson were obtained with the IPCS at a spectral resolution of 0.5 A and a spatial resolution of 10(exp 3) km. Spectra of comets Wilson and Nishikawa-Takamizawa-Tago were obtained with a CCD at a spectral resolution of 1.5 A and a spatial resolution of approximately 3 x 10(exp 3) km. Surface brightness profiles for NH2 were extracted from the long-slit spectra of each comet. The observed surface brightness profiles extend along the slit to approximately 6 x 10(exp 4) km from the nucleus in both sunward and tailward directions. By comparing surface distribution calculated from an appropriate coma model with observed surface brightness distributions, the photodissociation timescale of the parent molecule of NH2 can be inferred. The observed NH2 surface brightness profiles in all three comets compares well with a surface brightness profile calculated using the vectorial model, an NH3 photodissociation timescale of 7 x 10(exp 3) seconds, and an NH2 photodissociation timescale of 34,000 seconds

    The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP)

    Full text link

    Revealing Active Mars with HiRISE Digital Terrain Models

    Get PDF
    International audienceMany discoveries of active surface processes on Mars have been made due to the availability of repeat high-resolution images from the High Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter. HiRISE stereo images are used to make digital terrain models (DTMs) and orthorectified images (orthoimages). HiRISE DTMs and orthoimage time series have been crucial for advancing the study of active processes such as recurring slope lineae, dune migration, gully activity, and polar processes. We describe the process of making HiRISE DTMs, orthoimage time series, DTM mosaics, and the difference of DTMs, specifically using the ISIS/SOCET Set workflow. HiRISE DTMs are produced at a 1 and 2 m ground sample distance, with a corresponding estimated vertical precision of tens of cm and ∼1 m, respectively. To date, more than 6000 stereo pairs have been acquired by HiRISE and, of these, more than 800 DTMs and 2700 orthoimages have been produced and made available to the public via the Planetary Data System. The intended audiences of this paper are producers, as well as users, of HiRISE DTMs and orthoimages. We discuss the factors that determine the effective resolution, as well as the quality, precision, and accuracy of HiRISE DTMs, and provide examples of their use in time series analyses of active surface processes on Mar

    The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP)

    No full text
    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ~0.55% of the surface. Images are typically 5–6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions

    Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene

    No full text
    Graphene's success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications

    Contributory presentations/posters

    No full text
    corecore