131 research outputs found
Projecting the long-term benefits of single pill combination therapy for patients with hypertension in five countries.
Objective: To project the 10-year clinical outcomes associated with single pill combination (SPC) therapies compared with multi-pill regimens for the management of hypertension in five countries (Italy, Russia, China, South Korea and Mexico).
Methods: A microsimulation model was designed to project health outcomes between 2020 and 2030 for populations with hypertension managed according to four different treatment pathways: current treatment practices (CTP), single drug with dosage titration then sequential addition of other agents (start low and go slow, SLGS), free choice combination with multiple pills (FCC) and combination therapy in the form of a single pill (SPC). Model inputs were derived from the Global Burden of Disease 2017 dataset. Simulated outcomes of mortality, chronic kidney disease (CKD), stroke, ischemic heart disease (IHD), and disability-adjusted life years (DALYs) were estimated for 1,000,000 patients on each treatment pathway.
Results: SPC therapy was projected to improve clinical outcomes over SLGS, FCC and CTP in all countries. SPC reduced mortality by 5.4% in Italy, 4.9% in Russia, 4.5% in China, 2.3% in South Korea and 3.6% in Mexico versus CTP and showed greater reductions in mortality than SLGS and FCC. The projected incidence of clinical events was reduced by 11.5% in Italy, 9.2% in Russia, 8.4% in China, 4.9% in South Korea and 6.7% in Mexico for SPC versus CTP.
Conclusions: Ten-year projections indicated that combination therapies (FCC and SPC) are likely to reduce the burden of hypertension compared with conventional management approaches, with SPC showing the greatest overall benefits due to improved adherence
Prediction of the Caspian Sea level using ECMWF seasonal forecasts and reanalysis
This article is made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.The hydrological budget of the Caspian Sea (CS) is investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAi) and seasonal forecast (FCST) data with the aim of predicting the Caspian Sea Level (CSL) some months ahead. Precipitation and evaporation are used. After precipitation events over the Volga River, the discharge (Volga River discharge (VRD)) follows with delays, which are parameterized. The components of the water budget from ERAi and FCSTs are integrated to obtain time series of the CSL. Observations of the CSL and the VRD are used for comparison and tuning. The quality of ERAi data is sufficiently good to calculate the time variability of the CSL with a satisfactory accuracy. Already the storage of water within the Volga Basin allows forecasts of the CSL a few months ahead, and using the FCSTs of precipitation improves the CSL forecasts. The evaporation in the seasonal forecasts is deficient due to unrealistic sea surface temperatures over the CS. Impacts of different water budget terms on the CSL variability are shown by a variety of validation tools. The importance of precipitation anomalies over the catchment of the Volga River is confirmed, but also impacts from the two southern rivers (Sefidrud and Kura River) and the evaporation over the CS become obvious for some periods. When pushing the FCSTs beyond the limits of the seasonal FCSTs to 1 year, considerable forecast skill can still be found. Validating only FCSTs by the present approach, which show the same trend as one based on a statistical method, significantly enhances the skill scores
Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain
Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine
Comparative Genomic Analyses of Copper Transporters and Cuproproteomes Reveal Evolutionary Dynamics of Copper Utilization and Its Link to Oxygen
Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth
45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus
Research ArticleThe genus Avena comprises four distinct genomes organized in diploid (AA or CC), tetraploid
(AABB or AACC) and hexaploid species (AACCDD), constituting an interesting model
for phylogenetic analysis. The aim of this work was to characterize 45S rDNA intergenic
spacer (IGS) variability in distinct species representative of Avena genome diversity±A.
strigosa (AA), A. ventricosa (CvCv), A. eriantha (CpCp), A. barbata (AABB), A. murphyi
(AACC), A. sativa (AACCDD) and A. sterilis (AACCDD) through the assessment of the 5'
external transcribed spacer (5'-ETS), a promising IGS region for phylogenetic studies poorly
studied in Avena genus. In this work, IGS length polymorphisms were detected mainly due
to distinct 5'-ETS sequence types resulting from major differences in the number and organization
of repeated motifs. Although species with A genome revealed a 5'-ETS organization
(A-organization) similar to the one previously described in A. sativa, a distinct organization
was unraveled in C genome diploid species (C-organization). Interestingly, such new organization
presents a higher similarity with other Poaceae species than A-genome sequences,
supporting the hypothesis of C-genome being the ancestral Avena genome. Additionally,
polyploid species with both genomes mainly retain the A-genome 5'-ETS organization, confirming
the preferential elimination of C-genome sequences in Avena polyploid species.
Moreover, 5'-ETS sequences phylogenetic analysis consistently clustered the species studied
according to ploidy and genomic constitution supporting the use of ribosomal genes to
highlight Avena species evolutive pathways.info:eu-repo/semantics/publishedVersio
The Vitamin B1 Metabolism of Staphylococcus aureus Is Controlled at Enzymatic and Transcriptional Levels
Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels
Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems
This study investigated telomeric array organization of diverse chicken genotypes utilizing in vivo and in vitro cells having phenotypes with different proliferation potencies. Our experimental objective was to characterize the extent and nature of array variation present to explore the hypothesis that mega-telomeres are a universal and fixed feature of chicken genotypes. Four different genotypes were studied including normal (UCD 001, USDA-ADOL Line 0), immortalized (DF-1), and transformed (DT40) cells. Both cytogenetic and molecular approaches were utilized to develop an integrated view of telomeric array organization. It was determined that significant variation exists within and among chicken genotypes for chromosome-specific telomeric array organization and total genomic-telomeric sequence content. Although there was variation for mega-telomere number and distribution, two mega-telomere loci were in common among chicken genetic lines (GGA 9 and GGA W). The DF-1 cell line was discovered to maintain a complex derivative karyotype involving chromosome fusions in the homozygous and heterozygous condition. Also, the DF-1 cell line was found to contain the greatest amount of telomeric sequence per genome (17%) as compared to UCD 001 (5%) and DT40 (1.2%). The chicken is an excellent model for studying unique and universal features of vertebrate telomere biology, and characterization of the telomere length variation among genotypes will be useful in the exploration of mechanisms controlling telomere length maintenance in different cell types having unique phenotypes
Early evolution of the biotin-dependent carboxylase family
<p>Abstract</p> <p>Background</p> <p>Biotin-dependent carboxylases are a diverse family of carboxylating enzymes widespread in the three domains of life, and thus thought to be very ancient. This family includes enzymes that carboxylate acetyl-CoA, propionyl-CoA, methylcrotonyl-CoA, geranyl-CoA, acyl-CoA, pyruvate and urea. They share a common catalytic mechanism involving a biotin carboxylase domain, which fixes a CO<sub>2 </sub>molecule on a biotin carboxyl carrier peptide, and a carboxyl transferase domain, which transfers the CO<sub>2 </sub>moiety to the specific substrate of each enzyme. Despite this overall similarity, biotin-dependent carboxylases from the three domains of life carrying their reaction on different substrates adopt very diverse protein domain arrangements. This has made difficult the resolution of their evolutionary history up to now.</p> <p>Results</p> <p>Taking advantage of the availability of a large amount of genomic data, we have carried out phylogenomic analyses to get new insights on the ancient evolution of the biotin-dependent carboxylases. This allowed us to infer the set of enzymes present in the last common ancestor of each domain of life and in the last common ancestor of all living organisms (the cenancestor). Our results suggest that the last common archaeal ancestor had two biotin-dependent carboxylases, whereas the last common bacterial ancestor had three. One of these biotin-dependent carboxylases ancestral to Bacteria most likely belonged to a large family, the CoA-bearing-substrate carboxylases, that we define here according to protein domain composition and phylogenetic analysis. Eukaryotes most likely acquired their biotin-dependent carboxylases through the mitochondrial and plastid endosymbioses as well as from other unknown bacterial donors. Finally, phylogenetic analyses support previous suggestions about the existence of an ancient bifunctional biotin-protein ligase bound to a regulatory transcription factor.</p> <p>Conclusions</p> <p>The most parsimonious scenario for the early evolution of the biotin-dependent carboxylases, supported by the study of protein domain composition and phylogenomic analyses, entails that the cenancestor possessed two different carboxylases able to carry out the specific carboxylation of pyruvate and the non-specific carboxylation of several CoA-bearing substrates, respectively. These enzymes may have been able to participate in very diverse metabolic pathways in the cenancestor, such as in ancestral versions of fatty acid biosynthesis, anaplerosis, gluconeogenesis and the autotrophic fixation of CO<sub>2</sub>.</p
Recommended from our members
Azotobacter genomes: the genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412)
The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these findings are related to the potentially different environmental niches from which these organisms were isolated and to emerging theories about how microbes contribute to their communities
- …