64 research outputs found
SCIENCECRAFT
The technological capabilities are now at hand to design an integrated system that combine science instruments, spacecraft and propulsion elements into a single system. The authors have called this a Sciencecraft since it is intended to provide automatic scientific observations of planetary and astrophysical objects. Integration of function allows lower mass and cost and supports a short development cycle. A specific science mission is described in this paper, a flyby of Neptune, Triton and an object in the Kuiper belt. The SCIENCECRAFT system is described. It has electric propulsion and is capable of measuring the surface constituents and morphology of the objects visited and characterizing their atmospheres both in emission and absorption (against the sun). Miniature fields and particles experiments are incorporated that will provide interplanetary information together with details of the magnetic and electric attributes of each object. The SCIENCECRAFT is Delta launched and has a flight time to the Kuiper belt of 7 years. The design is such that the craft functions in a largely autonomous mode to provide low cost mission operations
Monitoring variations in lake water storage with satellite imagery and citizen science
Despite lakes being a key part of the global water cycle and a crucial water resource, there is limited understanding of whether regional or lakeâspecific factors control water storage variations in small lakes. Here, we study groups of small, unregulated lakes in North Carolina, Washington, Illinois, and Wisconsin, USA using lake level measurements gathered by citizen scientists and lake surface area measurements from optical satellite imagery. We show the lake level measurements to be highly accurate when compared to automated gauges (mean absolute error = 1.6 cm). We compare variations in lake water storage between pairs of lakes within these four states. On average, water storage variations in lake pairs across all study regions are moderately positively correlated (Ï = 0.49) with substantial spread in the degree of correlation. The distance between lake pairs and the extent to which their changes in volume are correlated show a weak but statistically significant negative relationship. Our results indicate that, on regional scales, distance is not a primary factor governing lake water storage patterns, which suggests that other, perhaps lakesâspecific, factors must also play important roles
Simulating the Allocation of Organs for Transplantation
The demand for donated organs greatly exceeds supply and many candidates die awaiting transplantation. Policies for allocating deceased donor organs may address equity of access and medical efficacy, but typically must be implemented with incomplete information. Simulation-based analysis can inform the policy process by predicting the likely effects of alternative policies on a wide variety of outcomes of interest. This paper describes a family of simulations developed by the US Scientific Registry of Transplant Recipients and initial experience in the application of one member of this family, the Liver Simulated Allocation Model (LSAM).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45816/1/10729_2004_Article_5277541.pd
Effects of Intermittent IL-2 Alone or with Peri-Cycle Antiretroviral Therapy in Early HIV Infection: The STALWART Study
The Study of Aldesleukin with and without antiretroviral therapy (STALWART) evaluated whether intermittent interleukin-2 (IL-2) alone or with antiretroviral therapy (ART) around IL-2 cycles increased CD4+ counts compared to no therapy
What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earthâs âSisterâ Planet
Venus is Earthâs closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earthâs sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Î17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Î17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Î17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Î17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a âGrab and Goâ strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, âvacuum-cleanerâ device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earthâs planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems
On the origin and evolution of the material in 67P/Churyumov-Gerasimenko
International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990â2017: a systematic analysis for the Global Burden of Disease Study 2017
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Factors influencing staff nurses' decisions for non-documentation of patient response to analgesia administration
âą The purpose of this descriptive field study is to determine what factors influence staff nurses' decisions for non-documentation of patients' response to analgesic administration. âą The study, based on Herbert Simon's descriptive model of decision making, has two components: (a) to determine staff nurses' perceptions of the factors that influence their documentation as well as how frequently they document analgesic administration and (b) to determine the actual frequency of nurses' documentation. âą Data collected from 67 staff nurses using a questionnaire designed for this study and through an audit of 65 patients' charts allowed comparison of nurses' perceptions with their actual practice. âą Analysis involved both quantitative and qualitative approaches. âą The results of the study have implications for nurse educators and nurse administrators.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73890/1/j.1365-2702.1992.tb00112.x.pd
- âŠ