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Abstract: Despite lakes being a key part of the global water cycle and a crucial water resource, there
is limited understanding of whether regional or lake-specific factors control water storage variations
in small lakes. Here, we study groups of small, unregulated lakes in North Carolina, Washington,
Illinois, and Wisconsin, USA using lake level measurements gathered by citizen scientists and lake
surface area measurements from optical satellite imagery. We show the lake level measurements to
be highly accurate when compared to automated gauges (mean absolute error = 1.6 cm). We compare
variations in lake water storage between pairs of lakes within these four states. On average, water
storage variations in lake pairs across all study regions are moderately positively correlated (ρ = 0.49)
with substantial spread in the degree of correlation. The distance between lake pairs and the extent
to which their changes in volume are correlated show a weak but statistically significant negative
relationship. Our results indicate that, on regional scales, distance is not a primary factor governing
lake water storage patterns, which suggests that other, perhaps lakes-specific, factors must also play
important roles.

Keywords: lake water storage; water level fluctuations; remote sensing; citizen science

1. Introduction

Surface water stored in lakes is a key part of the global water cycle and a crucial water
resource that provides drinking water, supports irrigation systems, promotes economic
activity and tourism, and generates hydroelectric power. In addition to supporting human
activities, lakes sustain diverse ecosystems important for many natural processes. Lakes
encompass geographically diverse areas, are the lowest points in their surrounding land-
scapes, serve as records of past hydrologic and geologic events, and regulate surrounding
climate. Because they integrate so many processes, lakes and reservoirs act as sentinels
of climate change and are among the areas most threatened by climate change and other
human impacts [1–4]. Lake water level, especially in endorheic (or seepage) lakes, is very
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sensitive to changes in the water balance [3,5]. Studying lake levels allows us to better
understand the effects of climate change on the water cycle and lake ecosystems [2,3].

Lake measurement systems, whether in situ or satellite-based, tend to focus mostly on
larger lakes. Lakes smaller than 10 km2 are generally poorly observed and monitored [6,7].
There are, however, many more small lakes than large lakes in the world. For example, of
the >1.4 million lakes larger than 0.1 km2 in the HydroLakes database [8], >1.2 million are
smaller than 1.0 km2. Furthermore, as lakes decrease in waterbody size, the total shoreline
length of those lakes increases [8]. As such, most land–lake interfaces occur in small lakes,
in return giving these small lakes a significant role in biogeochemical cycles [6,8]. Natural
lakes are not spread evenly over the globe; some areas have many lakes, while others
have none. In lake-rich regions, it is possible to conceptualize lakes as either individual
features or as common expressions of a shared water table. Which of these makes more
sense depends on the specific question at hand but also on how correlated variations in
lake water storage are within a region.

While there have been studies looking at regional patterns of change in lake wa-
ter level [9,10] or surface area [11] and while many ecologists study small lake ecosys-
tems, spatiotemporal patterns in lake water storage, especially for small lakes, remain
poorly studied despite their abundance and hydrological significance. A handful of
studies [12–14], mostly focused on the Tibetan Plateau, have examined controls on lake
volume across multiple lakes within a region. However, our understanding remains limited
regarding how the storage of water in regional groups of small lakes fluctuates, how that
differs from large lakes, what controls these fluctuations, and the implication of these
fluctuations on the ecosystem services they provide [6,15].

This gap in knowledge regarding small lakes is in large part caused by limitations in
current lake monitoring systems [3]. To date, lake monitoring is primarily done through
government-run gauge networks, studies by individual scientists, and satellite radar
altimetry. In the United States, the most robust gauge network is maintained by the
United States Geological Survey (USGS) and includes around 300 lakes, most of which are
relatively large, man-made, or dammed reservoirs [16]. Many state and local governments
have their own gauge networks, such as Lake Level Minnesota [17] and Water Data
for Texas [18]. These data are often limited for scientific purposes by major temporal
discontinuities (as in the case of Minnesota) or by a focus on regulated reservoirs (as in
Texas). Datasets collected by individual scientists tend to be of short duration and cover a
limited number of lakes. This leaves a large majority of the natural lakes in the United States
unmonitored [6–8]. Similar deficiencies exist elsewhere in the world [19–21]. Furthermore,
there has been an overall decline in gauging networks due to a lack of funding, lack of
personnel for installation and data collection, and difficulty of installation [22]. Satellite
radar altimetry can help monitor lake water level and lake water volume in areas where
in situ measurements are not available, as well as provide measurements over relatively
long-time spans [23]. These measurements, which are increasingly applicable to smaller
lakes [24,25], remain most effective for lakes larger than 1–10 km2 [26,27] and are available
only for a small fraction of lakes worldwide because satellite altimeter ground tracks are
widely spaced [28].

These limitations of current lake monitoring systems suggest that new strategies
are needed to understand variations in small lakes. High-resolution remote sensing of
inundation extent paired with measurements of lake stage by citizen scientists offers a
promising alternative approach. Time series of optical satellite imagery from sensors on
satellites such as Landsat and Sentinel 2 can be used to measure variations in lake area
over time, an important metric that provides key information about changes in lake water
storage [11,23,29–31]. However, on their own, these lake area measurements can be difficult
to interpret, since they provide only indirect information about water surface elevation.
Meanwhile, a new emphasis on citizen science in hydrology has shown that it is possible
to work with members of the public to measure water levels across a broad range of water
bodies [32–35]. By combining measurements of lake area from satellites and lake level from
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citizen scientists, we can measure variations in lake volume and storage to address key
science questions in lake hydrology.

In this paper, we aim to better understand the factors that control regional patterns
of lake water storage. We test whether the storage of water in regional groups of small
lakes varies in concert, suggesting regional-scale drivers, or if such variations are primarily
driven by local factors unique to each lake. To achieve this objective, we calculate changes
in lake water storage over time in groups of small natural lakes in Wisconsin, Illinois, North
Carolina, and Washington, USA through the use of lake level measurements gathered by
citizen scientists and lake extent measurements taken from optical satellite imagery. We
compare these time series of water storage between lakes within regional groups. If time
series within a group are highly correlated, then controls on lake water storage are likely
regional in nature. If they are uncorrelated, then local controls specific to each lake must be
relatively important.

2. Study Areas

For this study, we selected groups of natural lakes in North Carolina, Washington,
Illinois, and Wisconsin (Figure 1). We chose these lakes based on the feasibility of gauge
installation, ease of access, and lack of active controls on water levels. Because we were
interested in observing natural patterns, it was important to exclude any actively human-
controlled lakes or reservoirs. However, some of the lakes have structures that, while
not actively managed, were designed to generally keep water levels higher than would
naturally occur. The one exception is Horsepen Lake, in North Carolina, which experienced
minor changes to its outlet following Hurricane Florence in 2018. We retained it in our
analysis, though removing it would not substantially affect our results. We included both
drainage lakes and seepage lakes and did not explicitly attempt to differentiate between
them. The lake regions selected are of varying geographies and contain lakes with diverse
characteristics, such as area, depth, and proximity to other study lakes (Table 1) [36].
A table of lake properties can be found in the Appendix A (Table A1). We worked with
citizen scientists to collect water level data for lakes in North Carolina, Washington, and
Illinois as part of the Lake Observations from Citizen Scientists and Satellites (LOCSS)
Project [37], and we obtained data for lakes in Wisconsin from an existing network operated
by the Wisconsin Department of Natural Resources [38].
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Table 1. Comparison of lake level monitoring attributes between states.

North Carolina Washington Illinois Wisconsin

Number of Lakes 12 22 18 32

Lake Areas (km2)
Mean (Min–Max)

24.54 (0.89–103) 5.72 (0.06–89) 0.41
(0.06–0.98)

3.85
(0.05–39.61)

Distance to other
study Lakes (km)
Mean (Min–Max)

115.32 (0.3–249) 89.72 (1–206) 31.85 (0.1–83) 181.62
(0.8–437)

Satellite Images
Available (1 January

2015–1 February 2020)
2497 2303 1289 3056

Number of Lake Level
Measurements 2238 1296 827 960

Lake Level
Starting Dates 18 April 2017 10 September

2018 13 May 2019 1 April 2015

3. Methods

This project combines lake water levels collected by citizen scientists (Section 3.1) with
same-day surface water areas calculated from Landsat and Sentinel 2 imagery (Section 3.2)
to determine the change in lake water storage over time (Section 3.3). We then compared
the time series of lake water storage between lakes within each regional group to determine
if lakes fluctuate in coherence (Section 3.4) as well as determine if the distance between
lakes drives coherence (Section 3.5).

3.1. Measuring Lake Water Levels
3.1.1. Data Acquisition

Two citizen science projects provide the lake level data used in this study. For North
Carolina, Washington, and Illinois, the lake level data come from measurements collected
through the LOCSS Project. LOCSS is a NASA-funded project, begun in 2017, that combines
lake level data reported by a network of citizen scientists with satellite images, from which
lake area is determined, to better understand how the volume of water in natural lakes
is changing over time [39]. To collect these measurements, the LOCSS project installed
water level gauges into natural lakes. On top of the gauge is a sign with instructions, a
unique gauge ID, and a phone number (Figure 2). Citizen scientists passing by the gauge
read the lake level and text in the measurement, along with the gauge ID, to the phone
number. Alternatively, citizen scientists provide measurements on datasheets, via the
LOCSS website [37], or occasionally via other means such as email or a phone call. The
measurements are recorded and displayed in real-time on the LOCSS website. The record
begins on 18 April 2017 for the North Carolina lakes, on either 10 September 2018 or 11
June 2019 for the Washington lakes, and on 13 May 2019 for the Illinois lakes, depending on
the lake gauge installation date. All US LOCSS data are collected from gauges incremented
in units of 0.02 feet (~6 mm). Because it is possible to estimate between two increments,
we generally receive measurements to the nearest 0.01 foot (~3 mm). The data submitted
by the citizen scientists occur mostly at random time intervals, with some gauges having
more readings than others. We were interested in capturing measurements on or near
Landsat and Sentinel 2 overpass dates, however, to complete our volumetric analysis,
it is also worth noting that citizen scientists can sign up for email notifications and the
LOCSS newsletter on the LOCSS website (www.locss.org, accessed 1 March 2021), which
encourages and reminds them to make measurements on or close to Landsat and Sentinel
2 overpass dates.

www.locss.org
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Figure 2. An example of a LOCSS lake gauge with a sign on top for texting in measurements.
Figure (a) depicts a LOCSS lake gauge sign and what a citizen scientist would read. Figure (b) depicts
a LOCSS lake gauge located in Lake Howard, WA.

The lake level data from Wisconsin come from multiple sources but are dominated
by volunteer lake level monitoring efforts coordinated by the Wisconsin Department of
Natural Resources (WDNR) and partners (USGS, The North Lakeland Discovery Center,
county-level land and water departments, Table 1) [38]. Like the LOCSS project, volunteers
in Wisconsin take readings on a staff gauge and various professionals install/remove and
survey the staff gauges each spring and fall. Unlike LOCSS, individual volunteers are
responsible for monitoring a specific lake at least monthly, but ideally weekly, during
the ice-free season and are either trained to enter their data into WDNR’s Surface Water
Integrated Monitoring System or mail in a paper copy of their datasheet. The earliest data
used for this study start from on 1 April 2015, but start dates vary by lake. For this study,
we analyzed data collected until 1 February 2020. The LOCSS data collection method was,
in part, inspired by the CrowdHydrology text messaging system [32,34] and the Wisconsin
network protocols [38], so this study is partially indebted to their previous work.

An example of the lake level time series for Bay Tree Lake in eastern North Carolina
shows the typical format of the data (Figure 3a). Outliers were automatically filtered
out of the North Carolina, Washington, and Illinois lakes based upon the maximum and
minimum values on the gauge boards. Measurements that exceeded the maximum possible
value on a gauge were automatically removed. There are eight outliers in North Carolina
(out of 2238 total measurements), 33 (out of 1296) in Washington, and none (out of 827) in
Illinois. In Wisconsin, no outlier removal was required because the data were preprocessed
by Wisconsin’s DNR. In total, 5287 lake level measurements were used in this study.
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Figure 3. Example time series of (a) lake water level, (b) lake surface area, and (c) change in lake
volume in Salters Lake, located in eastern North Carolina.

3.1.2. GPS Processing

For three lakes in North Carolina and one in Washington, there are multiple gauges
on the same lake. We focused on studying change in lake level for the whole lake, not
the individual gauges, so for these cases, the lake level records were merged together to
create one record of change in lake level. To do this accurately, the scales of the lake levels
were matched based on GPS elevation data taken in the field during gauge installation.
GPS data were recorded at a rate of one measurement per second using a high-precision
Septentrio PolaRx-5 receiver (Leuven, Belgium) that was floated on a small raft [40] for one
hour immediately adjacent to the gauge.

This elevation was paired with the lake level measurement that was taken on that day.
If the height of a gauge were to change due to the effects of ice, human impacts, or other
factors, a new GPS elevation would be collected once the gauge was reinstalled or fixed.
Depending on the elevation and lake level measurement pair taken on that day the old and
new record could be matched. To match up multiple gauges on one lake, we used the GPS
and lake level pairing for each gauge to determine what the lake levels were at the same
elevations. We then calculated the difference between the levels at the same elevation and
added or subtracted that value from the lake level data record for each gauge.

3.1.3. Validation

One important concern regarding citizen science data is data accuracy, especially when
collected by those without specific training [41]. To address this concern and validate our
lake level data, we installed Levelogger Junior Edge pressure transducers (Manufactured by
Solinst, Georgetown, ON, Canada) , corrected for atmospheric pressure variations using a
Solinst Barologger located within at least 40 km. We collected coincident citizen science and
pressure transducer measurements at 14 gauges in North Carolina, 7 gauges in Washington,
and 12 gauges in Illinois. The pressure transducers recorded measurements every 15 min
for periods of 6–10 months. The pressure transducer data and citizen science data were
then adjusted to the same units and scale, matched by date and time, and regressed against
each other to determine accuracy.
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3.2. Measuring Lake Surface Area
3.2.1. Data Acquisition

To monitor change in lake surface extent, we used Landsat 8 Optical Land Imager
(OLI) and Sentinel 2 MultiSpectral Imager (MSI) images. The Landsat satellites have a
temporal resolution of 16 days and a spatial resolution of 30 m. The Sentinel 2 satellites have
a temporal resolution of five days and a spatial resolution of 10 m. The use of both Landsat
and Sentinel 2 sensors greatly increases image availability. We acquired the images and
calculated the lake surface area using code written in Google Earth Engine (GEE) [42,43].
The satellite images were selected using lake polygons from the National Hydrography
Dataset (NHD) [44]. Lake polygons do not exist in the NHD database for Horsepen Lake
in North Carolina or for Deep Quarry, Harrier, and Herrick lakes in Illinois. In these cases,
lake polygons are hand drawn in GEE. Clouds in images lead to commission errors, false
positives, and overestimation, so images with more than 30% cloud cover were filtered
out. After this filter was applied, we retained 8590 satellite images during the timeframe of
our study.

3.2.2. Water Mask

For all images in this collection, we calculated lake surface area using the Dynamic
Surface Water Extent (DSWE) method [45] on both the Landsat and Sentinel 2 imagery.
In order to use DSWE for the Sentinel 2 imagery, we first applied a transformation func-
tion to the Sentinel 2 imagery to approximate reflectance values for equivalent Landsat
bands [46,47]. The DSWE algorithm then classified each pixel into one of five categories:
high probability of water, moderate probability of water, low probability of water, not water,
or wetland (Figure 4b). Open water pixels with a high or moderate level of confidence
and wetland pixels were selected to create the water mask over each lake (Figure 4d).
We included wetland pixels due to the large amounts of inundated vegetation in some
lakes. To allow the inclusion of images in which a lake is partially obscured by clouds,
we employed a cloud filling algorithm. We identifyed cloudy areas over lakes using the
CFmask algorithm for Landsat [48] and the built-in quality band for Sentinel 2. It fills in
the cloud-created gaps in the lake mask (Figure 4c) within the lake polygon boundary
using the Surface Water Occurrence (SWO) Value developed by Pekel et al. [28]. The SWO
value represents the frequency, between 1984 and 2015, that surface water was observed
by Landsat. We used the mean water occurrence value from the shoreline pixels along the
DSWE water mask as a dynamic threshold for water occurrence to fill in the cloud-obscured
areas within the lake and designate those pixels as water (Figure 4e). Using a function
written in Google Earth Engine (GEE), we then calculated the lake surface area for each
lake image in the time series (Figure 3f).

Values >±25% from the median surface area value in the lake surface area time series
were treated as outliers and removed. This threshold was chosen by manually checking
lakes with apparent changes in area. In lakes with very high variations in surface area,
this threshold might require adjustment, but the surface areas of lakes studied here are
sufficiently stable so the application of this threshold is unlikely to result in the removal of
correct observations. After removing the outliers, the number of usable satellite images
dropped to 7961. These images were matched to the lake level data to calculate variations
in lake volume (See Section 3.3).



Water 2021, 13, 949 8 of 22Water 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 4. Representation of our surface area classifications over Great Lake in Eastern North 

Carolina taken on 19 January 2017: (a) Landsat satellite image; (b) DSWE classifications with high 

probability of water (blue), moderate probability of water (cyan), low probability of water (orange), 

inundated vegetation or wetland (green), no water (no color); (c) cloud mask; (d) initial water mask; 

(e) Pekel surface water occurrence values ranging from low occurrence (red) to high occurrence 

(dark blue); (f) complete water mask with cloudy areas filled in. 

Values >±25% from the median surface area value in the lake surface area time series 

were treated as outliers and removed. This threshold was chosen by manually checking 

lakes with apparent changes in area. In lakes with very high variations in surface area, 

this threshold might require adjustment, but the surface areas of lakes studied here are 

sufficiently stable so the application of this threshold is unlikely to result in the removal 

of correct observations. After removing the outliers, the number of usable satellite images 

dropped to 7961. These images were matched to the lake level data to calculate variations 

in lake volume (See Section 3.3).  

3.2.3. Validation 

To evaluate the accuracy of our automated lake surface extent calculations from the 

Landsat and Sentinel 2 imagery, we used high-resolution satellite data from Planet (San 

Francisco, CA, USA), PlanetScope and RapidEye imagery, to provide a second estimate of 

lake surface extent [49]. Planet imagery was collected using 170 CubeSat satellites and 

provided daily temporal resolution [49]. It has three satellite types: PlanetScope with 3.7 

m resolution, RapidEye with 6.5 m resolution, and SkySat with 72 cm resolution [49]. For 

this analysis, we used the PlanetScope and RapidEye images because they are freely 

available to researchers, and we conducted the analysis on the Planet imagery platform, 

which includes a built-in tool that automatically calculates the area of a polygon. While 

Cooley et al. [11,50] developed automated surface area calculation methods using Planet 

imagery, here we manually delineated surface areas primarily due to the small scale of 

the analysis and potential errors associated with automated detection, such as errors 

caused by clouds, shadows, and wetlands. We chose three lakes for the validation: Bay 

Tree Lake in eastern North Carolina, Hastings Lake in Illinois, and Lake Wenatchee in 

Washington. These lakes were chosen because they represent different test cases. Bay Tree 

Lake poses little difficulty when calculating lake surface area. Hastings Lake, however, is 

one of our smallest lakes, leading to potential errors. Lake Wenatchee, meanwhile, 

experiences both topographic shadow and adjacent snow cover. We selected five dates 

from each lake’s surface area record that also had a corresponding lake level measurement 

and found the corresponding Planet image on that date. In three cases, images were 

matched plus or minus a day due to a gap in the Planet record or clouds. Some dates had 

Figure 4. Representation of our surface area classifications over Great Lake in Eastern North Carolina
taken on 19 January 2017: (a) Landsat satellite image; (b) DSWE classifications with high probability
of water (blue), moderate probability of water (cyan), low probability of water (orange), inundated
vegetation or wetland (green), no water (no color); (c) cloud mask; (d) initial water mask; (e) Pekel
surface water occurrence values ranging from low occurrence (red) to high occurrence (dark blue);
(f) complete water mask with cloudy areas filled in.

3.2.3. Validation

To evaluate the accuracy of our automated lake surface extent calculations from
the Landsat and Sentinel 2 imagery, we used high-resolution satellite data from Planet
(San Francisco, CA, USA), PlanetScope and RapidEye imagery, to provide a second estimate
of lake surface extent [49]. Planet imagery was collected using 170 CubeSat satellites and
provided daily temporal resolution [49]. It has three satellite types: PlanetScope with
3.7 m resolution, RapidEye with 6.5 m resolution, and SkySat with 72 cm resolution [49].
For this analysis, we used the PlanetScope and RapidEye images because they are freely
available to researchers, and we conducted the analysis on the Planet imagery platform,
which includes a built-in tool that automatically calculates the area of a polygon. While
Cooley et al. [11,50] developed automated surface area calculation methods using Planet
imagery, here we manually delineated surface areas primarily due to the small scale of the
analysis and potential errors associated with automated detection, such as errors caused
by clouds, shadows, and wetlands. We chose three lakes for the validation: Bay Tree Lake
in eastern North Carolina, Hastings Lake in Illinois, and Lake Wenatchee in Washington.
These lakes were chosen because they represent different test cases. Bay Tree Lake poses
little difficulty when calculating lake surface area. Hastings Lake, however, is one of our
smallest lakes, leading to potential errors. Lake Wenatchee, meanwhile, experiences both
topographic shadow and adjacent snow cover. We selected five dates from each lake’s
surface area record that also had a corresponding lake level measurement and found the
corresponding Planet image on that date. In three cases, images were matched plus or
minus a day due to a gap in the Planet record or clouds. Some dates had two usable
images due to overlapping satellite orbits. In these cases, both were used and tested. For
the analysis, we first manually drew the lake boundary on each image, creating a lake
polygon (Figure 5). Next, we calculated the surface area over that polygon using the Planet
interface tool. Everything inside of the polygon is considered water, so the lake surface area
is equivalent to the polygon area. Additionally, we compared the same-day area estimates
from Sentinel 2 and Landsat for the subset of lakes/days when both sensors captured
images (n = 209).
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Figure 5. Examples of lake surface area validation and Planet imagery in (a) a simple case, Bay Tree
Lake on 21 July 2017, (b) a case with a small lake, Hastings Lake on 24 November 2019, and (c) a case
with topographic shadow, Lake Wenatchee on 2 June 2019. The white line is the manually delineated
lake shoreline. Everything inside of that boundary is considered water. Surface areas of (a) 5.88 km2,
(b) 0.29 km2, and (c) 9.68 km2 were calculated.

3.3. Measuring Lake Water Storage

To calculate change in lake water storage on dates without coincident satellite images,
we developed rating curves between lake level and lake volume. We calculated the initial
lake water volume using the lake level measurements collected by the citizen scientists and
the surface area measurements derived from the Landsat and Sentinel 2 imagery. We then
used a rating curve to estimate variations in volume from lake level alone.

3.3.1. Calculation of Lake Water Storage

To calculate change in lake storage, or volume, over time, the lake water level mea-
surements for each of the lakes were combined with lake surface area measurements. If a
lake level and a surface area measurement fell on the same day, they were automatically
paired. If there were two lake level measurements on the same day, then a mean surface
area was used. If there was no lake level taken on the day a surface area measurement was
taken, then the nearest lake level measurement ±1 day was used as a pairing. If there was
a lake level measurement from the day before as well as one for the day after the image
was collected, we averaged the lake level measurements. If there was no matching lake
surface area measurement for a lake level measurement or vice versa, those data were not
used in calculating volume variations.

Lake volume change was then calculated for each date with a lake level and area
pairing based on a linear equation that assumes lake volume change can be approximated
by trapezoidal volume:

V =
h
2
× (B1 + B2) (1)

where V is volume, h is height, B1 is one base measurement of the trapezoid and B2 is
the other base measurement of the trapezoid. This basic equation can then be applied to
capture the change in water volume for lakes [51]:

∆V
(

ti
tio

)
=

[B(ti) + B(tio)]

2
× [h(ti)− h(tio)] (2)
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where ∆V
(

ti
tio

)
is change in volume from ti, time of image, to tio, time of the first image in

the time series. B(ti) is the lake water surface area at the time of the image, while B(tio) is
the lake water surface area at the time of the first image in the time series. The variable
h(ti) is the height at time of image and h(tio) is the height of the lake in the first image in
the time series. Applying this equation to each level and area pair leaves us with a time
series of variations in lake water volume for each lake (Figure 3c). Absolute volume cannot
be calculated because lake bathymetry is unknown. We worked under the assumption that
lake bathymetry remains constant throughout the study period. It is also worth noting that
the trapezoidal hypothesis most likely only works for a certain range of lake level to area
pairings since area grows quadratically; however, in this study, the hypsometries found
are very linear, confirming the applicability of the trapezoidal hypothesis. Note that in
Figure 3 the water level and storage change data are highly correlated, while the inundated
area data are not. Because variations in lake area are so small (standard deviation 0.04 km2,
~3% of mean area), nearly all variations in storage are explained by increases or decreases
in water level. In addition, some of the observed variation in area for this lake is likely due
to errors in satellite retrievals.

3.3.2. Hypsometric Curve

In order to maximize data usage for each lake, we used a hypsometry approach to
estimate variations in lake volume. This approach has been used by others [23,52–54].
Ogilvie et al. (2018) [52] noted that for most small lakes, change in lake water volume
primarily functions as a response to changes in lake water level; we made the same
observation when looking at the degree of variation of change in lake water levels, areas,
and volumes in each region. To develop a level-volume change rating curve for each lake,
we regressed the calculated variations in lake water volume against the corresponding lake
level measurements. A linear equation was determined for this relationship (Figure 6). The
equation was then applied to all lake level measurements in the lake’s record to calculate a
volume variation time series.

Water 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 6. Example of the linear relationship determined between change in height and calculated 

change in volume to create a rating curve at Bay Tree Lake. 

3.3.3. Propagation of Lake Height Errors into Volume Variations 

Ideally, we would like to estimate errors in volume change calculations. However, 

doing so robustly would require bathymetric measurements that we did not have for most 

lakes. Instead, we evaluated how the error in the lake height measurements propagates 

into volume estimates. To do so, we also calculated lake volume changes using lake level 

data collected from the pressure transducers using the same steps described in Sections 

3.3.1–3.3.2. The change in volume time series for both the pressure transducer data and 

the citizen science data were overlaid on the same plot. The time series show similar 

variations, though some of the high-frequency variability is not captured by the less 

temporally dense citizen science data (Figure 7). We then calculated Pearson’s Correlation 

Coefficient (r) between the pressure transducer data and the citizen science data time 

series. 

 

Figure 6. Example of the linear relationship determined between change in height and calculated
change in volume to create a rating curve at Bay Tree Lake.

3.3.3. Propagation of Lake Height Errors into Volume Variations

Ideally, we would like to estimate errors in volume change calculations. However,
doing so robustly would require bathymetric measurements that we did not have for most
lakes. Instead, we evaluated how the error in the lake height measurements propagates
into volume estimates. To do so, we also calculated lake volume changes using lake
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level data collected from the pressure transducers using the same steps described in
Sections 3.3.1 and 3.3.2. The change in volume time series for both the pressure transducer
data and the citizen science data were overlaid on the same plot. The time series show
similar variations, though some of the high-frequency variability is not captured by the less
temporally dense citizen science data (Figure 7). We then calculated Pearson’s Correlation
Coefficient (r) between the pressure transducer data and the citizen science data time series.
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3.4. Correlations between Change in Lake Water Storage
3.4.1. Data Acquisition

Once variations in lake water storage are calculated for all lakes in all regions, we
calculated the Spearman’s correlation coefficient (ρ) [55] of those changes between all pairs
of lakes in each region. Lake pairs were simply identified as all possible combinations of
study lakes within a study region. We chose to use Spearman’s ρ because it is less sensitive
than a Pearson’s correlation to the assumption that relationships between paired lake water
levels are linear. We also calculated Pearson’s correlations (not reported here) and noted
only minor differences with Spearman’s ρ. Observations for each lake were matched by
date, or ±1 day if no same-date match. If there were fewer than 10 paired measurements, a
correlation coefficient was not calculated, and the lake to lake pair was not used. We used
a threshold of n = 10 to avoid a case where a very small number of observations led to a
spurious correlation. However, we noted that including all lakes does not substantially
change our results. This analysis was repeated for all lake pairs in a region, no matter how
close or distant, and completed separately for each of the four regions.

3.4.2. Validation

In order to evaluate whether paired lake correlations based on sparse citizen science
data are useful, we compared them against paired lake correlations based on much more
temporally dense pressure transducer measurements. If correlation coefficients are similar
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using the two different methods, then we have higher confidence in the analysis based on
citizen science measurements.

3.5. Spatial Analysis

To assess whether correlations in paired lake water storage are controlled by distance,
we regressed the correlation coefficients described in Section 3.4.1 against the distance
between the pair of lakes associated with each correlation. We assessed whether distance is
a major control on correlation using Spearman’s ρ between paired lake distance and paired
lake correlation coefficient.

4. Results
4.1. Validation Results
4.1.1. Citizen Science Data

Comparison of lake level measurements made by citizen scientists against pressure
transducers show that measurements by citizen scientists are highly accurate (Figure 8).
Across 2702 corresponding lake level measurements, we observe an R2 value of >0.99, a
mean absolute error (MAE) of 1.6 cm, and a root mean squared error (RMSE) of 2.7 cm.
The measurement error of the pressure transducers is 0.8 cm. There are several (n = 9)
outliers in the citizen science data, and we attributed most of these to data entry errors by
citizen scientists.

Water 2021, 13, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 8. A scatterplot depicting the accuracy of citizen science measurements as compared to data 

collected by pressure transducers. The accuracy of citizen science measurements is very high, with 

MAE of only 1.6 cm. The accuracy of the pressure transducers themselves is ~0.8 cm. 

4.1.2. Lake Surface Area 

Comparison against manual classifications based on high-resolution Planet imagery 

suggests that automated Landsat and Sentinel 2 classifications are generally accurate. For 

Bay Tree Lake, the average surface area delineated from Planet imagery is 98.95% of the 

surface area delineated from Landsat or Sentinel 2 imagery (mean absolute error (MAE): 

0.066 km2); for Hastings Lake, it is 80.19% (MAE: 0.059 km2); and for Lake Wenatchee, it 

is 103% (MAE: 0.373 km2). In Bay Tree Lake, the most straight-forward case, the percent 

difference between the Landsat or Sentinel 2 imagery and the Planet imagery is minimal. 

Lake Wenatchee, a more difficult case due to the topographic shadow that covers the lake 

at times as a result of the lake’s location in the Cascade Mountains, has a slightly larger 

percent difference. The values of topographically shadowed pixels in the imagery are 

similar to those of the water, leading to a modest overestimation of surface water in our 

automatic Landsat and Sentinel 2 classifications compared to Planet imagery. Hastings 

Lake, our representative small lake case, has the greatest percent difference. We see an 

underestimation of lake surface area in our automated classifications. This is most likely 

due to the coarse spatial resolution of the imagery compared to the lake area, especially 

in the case of Landsat. In general, we see a larger difference between Landsat and Sentinel 

2 derived areas in small lakes because of Sentinel 2’s higher spatial resolution. This 

difference is generally negligible. The 209 coincident Landsat and Sentinel 2 observations 

that occurred during our study period show a mean difference of −0.8% (σ = 5%) in their 

predicted areas. We note that because the underestimation typical of small lakes is 

relatively consistent in time, it will likely have a small impact on the time series of water 

storage used for lake correlations and will, instead, represent a systematic offset. We also 

note that, during our study period, we observed minimal change in lake area in all study 

lakes. Thus, in the cases studied here, changes in lake volume are almost entirely driven 

by variations in water surface elevation.

Figure 8. A scatterplot depicting the accuracy of citizen science measurements as compared to data
collected by pressure transducers. The accuracy of citizen science measurements is very high, with
MAE of only 1.6 cm. The accuracy of the pressure transducers themselves is ~0.8 cm.

4.1.2. Lake Surface Area

Comparison against manual classifications based on high-resolution Planet imagery
suggests that automated Landsat and Sentinel 2 classifications are generally accurate. For
Bay Tree Lake, the average surface area delineated from Planet imagery is 98.95% of the
surface area delineated from Landsat or Sentinel 2 imagery (mean absolute error (MAE):
0.066 km2); for Hastings Lake, it is 80.19% (MAE: 0.059 km2); and for Lake Wenatchee, it
is 103% (MAE: 0.373 km2). In Bay Tree Lake, the most straight-forward case, the percent
difference between the Landsat or Sentinel 2 imagery and the Planet imagery is minimal.
Lake Wenatchee, a more difficult case due to the topographic shadow that covers the
lake at times as a result of the lake’s location in the Cascade Mountains, has a slightly
larger percent difference. The values of topographically shadowed pixels in the imagery
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are similar to those of the water, leading to a modest overestimation of surface water in
our automatic Landsat and Sentinel 2 classifications compared to Planet imagery. Hast-
ings Lake, our representative small lake case, has the greatest percent difference. We see
an underestimation of lake surface area in our automated classifications. This is most
likely due to the coarse spatial resolution of the imagery compared to the lake area, espe-
cially in the case of Landsat. In general, we see a larger difference between Landsat and
Sentinel 2 derived areas in small lakes because of Sentinel 2’s higher spatial resolution. This
difference is generally negligible. The 209 coincident Landsat and Sentinel 2 observations
that occurred during our study period show a mean difference of −0.8% (σ = 5%) in their
predicted areas. We note that because the underestimation typical of small lakes is relatively
consistent in time, it will likely have a small impact on the time series of water storage
used for lake correlations and will, instead, represent a systematic offset. We also note that,
during our study period, we observed minimal change in lake area in all study lakes. Thus,
in the cases studied here, changes in lake volume are almost entirely driven by variations
in water surface elevation.

4.1.3. Lake Volume Correlations

In order to test propagation of errors in lake heights from citizen scientists into
lake volume calculations, we compared the correlation coefficients of change in lake
volume between pairs of lakes derived from the citizen science measurements against those
calculated from the automated water level loggers. We see that they compare very well
and are similar, though not identical (Figure 9). The Pearson’s correlation coefficient is
0.76 between paired lake correlation coefficients from the two different data sources. That,
plus the relative similarity of the best fit and one-to-one lines, suggests that, in general,
correlation coefficients from temporally sparse citizen science data are likely reliable. The
average difference in correlation coefficients calculated for the same pair of lakes using
data from citizen scientists and from pressure transducers is 0.23. There is no relationship
between the number of measurements collected and the difference between citizen science-
based and pressure transducer-based correlation coefficients in any of the lake regions.
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Figure 9. Correlation coefficients between lake pairs in a region of the citizen-scientist-based change
in volume versus the correlation coefficients between lake pairs in a region of the pressure-transducer-
based change in volume. A strong correlation between the two is seen. The dashed line is a one-to-one
line and the blue line is the line of best fit.
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4.2. Variations in Lake Water Storage
4.2.1. Regional Coherence of Changes in Lake Water Volume

On average, water storage variations in pairs of lakes within each of the study regions
are positively correlated (average ρ = 0.48, Figure 10). The distributions of correlations are
similar for all four regions, though interestingly they are somewhat higher in Washington,
the only region with notable topography, and lowest in North Carolina and Wisconsin.
There is a substantial spread in the degree of correlation, with some pairs of lakes highly
correlated and others uncorrelated.
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4.2.2. Correlations and Relationship with Distance

There is a weak negative relationship between distance and paired lake correlation
in two regions (Washington and Illinois) and no significant relationship in the other two
regions (North Carolina and Wisconsin) (Figure 11b–e). When lakes in all regions are
combined, there is a weak but statistically significant negative relationship between distance
and paired lake correlation (Figure 11a).

We tested whether the correlations with distance are influenced by the number of
paired measurements and found no relationship in all of the regions combined or in any
region individually. We also tested whether the variability in paired lake correlation
increases with paired lake distance. There is a slight but significant (p < 0.01) negative
relationship in North Carolina and a positive relationship in Illinois. Results for other
regions, and for all regions together, show no significant relationship.
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Figure 11. Relationship between the Spearman’s correlation coefficient (ρ) of change in lake water storage between paired
lakes in a region and the distance between those two lakes: all regions (a), North Carolina (b), Illinois (c), Washington (d),
and Wisconsin (e). Overall, there is a negative linear relationship between correlation and distance. This trend is different
region by region.

5. Discussion

First and foremost, this study demonstrates that two still-evolving approaches, citizen
science and optical remote sensing of lake area, can be combined to accurately monitor
changes in lake water storage over time. Citizen science lake level data are nearly as
accurate as pressure transducer data, with the primary difference being that the pressure
transducer data capture a near-continuous time series. The lake surface areas automatically
calculated from Landsat and Sentinel 2 imagery are quite similar to the areas manu-
ally calculated from Planet imagery in most cases. For simple cases, like Bay Tree Lake
(Figure 5a), lake surface areas compare very well to manually digitized maps made from
same-day, high-resolution Planet imagery. For cases where topographic shadows are impor-
tant, like Lake Wenatchee (Figure 5c), lake surface area is overestimated in the automated
classifications, likely due to topographic shadow pixels misclassified as water. For small
lakes, like Hastings Lake (Figure 5b), we see an underestimation of lake surface area in our
automated classifications, likely due to the fact that a large portion of the lake is covered
by mixed water-land pixels. In general, the Planet imagery has a finer spatial resolution
than that of the Landsat and Sentinel 2 imagery, meaning that Planet imagery can capture
more heterogeneity and detect subtle changes in inundation extent not apparent in Landsat
or Sentinel 2 imagery [11]. It is important to note that there could still be errors in the
Planet surface area delineations due to user error. Ultimately, there is no available dataset
that represents absolute truth when measuring surface area through satellite imagery [51].
Overall, our results suggest that citizen science data and optical satellite imagery accurately
capture changes in lake water storage.

The study presented here begins to provide a baseline in the level of correlation
we may expect to see in the changes of lake water storage between lakes in a region, at
least on timescales of 1–2 years. Perhaps surprisingly, the average correlation between
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pairs of lakes within our four study regions is only moderately positive (ρ = 0.48) and
highly variable. This result suggests that measurements made in one lake provide some
regional information, but, at least in the regions we examined, there is also a great deal of
lake-to-lake variability in water storage time series. This result contrasts with findings by
Watras et al. (2014) [10], in four lakes in northern Wisconsin, who found that, over the last
70 years, water level variations were controlled by a near decadal oscillation (~13 years),
independent of lake or aquifer hydrology and that the oscillation has been driven by net at-
mospheric flux as well as level-dependent outflow. In contrast, Euliss and Mushet (1996) [9],
who studied the controlling factors of 36 small wetland waterbodies in the prairie-pothole
region in North and South Dakota, found that during one spring and summer season,
water level fluctuations were influenced by lake-to-lake variability. Variations were greater
in wetlands with more agricultural activity, rather than grasslands, and water level fluctu-
ations in semi-permanent wetlands were more stable due to the inputs of groundwater,
whereas seasonal and temporary wetlands solely depended on runoff. Perales et al. [56]
studied changes in lake water storage across 47 lakes in Northern Wisconsin during a
five-year drought between 2005 and 2010. They found that most lakes lost water during
this period, but the degree of loss varied considerably; much of this variability could be
explained by lake-specific factors, including soil characteristics, elevation, the presence
of littoral wetlands, and whether the lake was a drainage or seepage lake. Correlations
between surface areas in small lakes and their sub-seasonal dynamics have also been
studied by Cooley et al. (2019) [11] across Alaska and the Canadian Shield. They noted
that, as a whole, lake surface area declined across all study regions, with some distinct
localized exceptions, which primarily reflected negative net summer atmospheric flux in
North America in 2017. They also note that changes in surface area are primarily driven
by lake level fluctuation, not shoreline vegetation growth. As the body of work exploring
controls on lake storage fluctuations remains limited, further work needs to be done to
determine what localized and regional factors control observed patterns. Unlike Watras
et al. [10], our study spans up to two years, and hence we do not capture decadal-scale
patterns. The patterns we see are most likely yearly cyclical patterns and sub-seasonal
dynamics, like in Cooley et al. [11], or localized weather events and also likely represent a
small fraction of the total change in storage lakes would experience at longer time scales.
A future study would benefit from at least 10 years of data, which would allow better
comparison to long-term studies such as the work of Watras et al. [10].

We observed only a limited correlation between paired lake Spearman’s ρ and paired
lake distance. The hypothesis that as the distance between lakes increases, the correlation
of change in lake water storage between those two lakes decreases is an intuitive one.
However, the results from this study provide only limited evidence for this relationship.
When aggregated together across all regions, our data show a significant but weak correla-
tion (ρ = −0.26). Two regions, Illinois and Washington, show slightly stronger negative
relationships between correlation and distance (ρ = −0.37 and −0.54, respectively), while
North Carolina and Wisconsin show no significant relationship between correlation and
distance. We also tested for any relationship between the variation in paired lake correla-
tion (as measured by the absolute value of residuals) and distance but found no statistically
significant relationship in any region. All of this suggests that, when thinking about the
spatial synchrony between the change in lake water storage of the lakes, there are other
factors in play that are more important than distance [57].

With such limited evidence supporting distance as a primary driver of the spatial
synchrony of lake volume change, other local factors must be in play that matter more in
governing lake volume change. Watras et al. [10] observed stronger lake-to-lake correlations
than we did, which may reflect the possibility that regional drivers are more important at
longer time scales. However, they also examined a much smaller number of lakes (focused
mostly on one pair in Northern Wisconsin, along with the Great Lakes and groundwater
well records). The Perales study referenced above [56] from Northern Wisconsin found
that lake and watershed characteristics (e.g., seepage versus drainage lakes, conductivity,
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elevation, soil permeability, percent wetland buffer) were good predictors of water level
change, with very different magnitudes of response to drought among some neighboring
lakes. In addition, the lakes in our study experienced some major and somewhat unusual
events during the study period—for example, the large spike in water levels in Salters Lake
(Figure 3) is the result of Hurricane Florence, which impacted some North Carolina lakes
much more than others, pointing to the local influence of the storm occurring at shorter
time scales. Our results suggest that, at least in the places and over the time periods studied
here, both regional and lake-specific factors control variations in lake water storage.

While the results of this study represent the first analysis of lake-to-lake water storage
correlation across many lakes, there is still a great deal that we do not understand about
the drivers of lake water levels. Exploring what these drivers might be is of great interest
but is beyond the scope of this paper. Many relevant questions will be addressed after the
launch of the upcoming SWOT satellite mission in 2022 [58]. Since SWOT will measure
lakes as small as 250 m by 250 m, it will provide a time series of variations in water storage
for millions of lakes globally. Continuing measurements from LOCSS and other sources
based on citizen science and satellite imaging will provide key ground-truthing data for
SWOT, especially in areas where on-the-ground measurements are limited.

Overall, this study addresses a gap in understanding regional patterns of lake water
storage. We suggest that change in lake water volume in small lakes can be monitored
accurately by combining measurements of water level from citizen scientists with optical
satellite imaging of lake area. Assessment of relationships in water volume between pairs
of lakes, on average, produce moderate correlations, suggesting that both regional patterns
and lake-specific factors are important drivers of variations in lake water storage. To our
knowledge, this is the first study to assess the degree of correlation in water storage time
series among many small lakes in different regions. It presents the first results that can
guide future hypotheses and data collection efforts. We hope that continued data collection
by citizen scientists and satellites can further our understanding of natural lakes, including
the usually overlooked small ones, especially in a time of rapid environmental change.
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Appendix A

Table A1. Individual Lake Characteristics.

Lake Name Region
Approx.

Size
(km2)

Date of First Lake
Level

Measurement

Date of Last Lake
Level

Measurement
Used

Number of
Lake Level
Measure-

ments

Number of
Satellite
Images

(1 January
2015–1

February 2020)

Bay Tree Lake NC 5.8 18 April 2017 20 January 2020 325 130

Catfish Lake NC 3.8 19 September 2017 22 May 2019 37 196

Great Lake NC 11.3 19 September 2017 10 January 2020 42 127

Horsepen Lake NC 1.2 21 September 2017 20 January 2020 201 130

Jones Lake NC 0.9 18 April 2017 1 February 2020 149 130

Lake Mattamuskeet West NC 57.6 1 June 2017 27 January 2020 137 129

Phelps Lake NC 64.5 1 June 2017 25 January 2020 295 100

Salters Lake NC 1.3 18 April 2017 1 February 2020 137 173

Singletary Lake NC 2.3 18 April 2017 30 January 2020 97 130

Lake Mattamuskeet East NC 105.7 1 June 2017 27 January 2020 134 129

Lake Waccamaw NC 35.8 18 April 2017 19 January 2020 260 130

White Lake NC 4.3 18 April 2017 25 December 2019 122 130

Beaver Lake WA 0.3 10 September 2018 25 January 2020 56 75

Walupt Lake WA 1.5 12 June 2019 30 October 2019 15 109

Bosworth Lake WA 0.4 12 September 2018 28 January 2020 25 122

Lake Cassidy WA 0.5 12 September 2018 26 October 2019 36 122

Coldwater Lake WA 3.0 11 June 2019 1 February 2020 54 75

Deep Lake WA 0.2 10 June 2019 28 November 2019 39 74

Dog Lake WA 0.2 13 June 2019 30 October 2019 9 144

Echo Lake WA 0.06 12 September 2018 30 October 2019 50 132

Fish Lake WA 2.0 12 June 2019 24 January 2020 24 95

Lake Howard WA 0.1 11 June 2019 10 December 2019 10 155

Lake Ki WA 0.4 11 June 2019 25 November 2019 8 154

Lake Lawrence WA 1.3 12 September 2018 1 February 2020 66 135

Leech Lake WA 0.2 13 June 2019 5 December 2019 30 144

Phantom Lake WA 0.3 10 September 2018 31 January 2020 166 100

Crabapple Lake WA 0.1 11 June 2019 26 August 2019 8 134

Lake Roesiger WA 1.4 10 September 2018 28 January 2020 29 121

Lake Sammamish WA 19.6 11 September 2018 30 January 2020 144 98

Steel Lake WA 0.2 10 June 2019 31 January 2020 110 99

Flowing Lake WA 0.5 10 September 2018 28 January 2020 46 122

North Lake WA 0.2 10 June 2019 1 February 2020 50 99

Lake Wenatchee WA 9.7 10 September 2018 25 January 2020 60 95

Lake Martha WA 0.2 13 September 2018 26 January 2020 74 154
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Table A1. Cont.

Lake Name Region
Approx.

Size
(km2)

Date of First Lake
Level

Measurement

Date of Last Lake
Level

Measurement
Used

Number of
Lake Level
Measure-

ments

Number of
Satellite
Images

(1 January
2015–1

February 2020)

Diamond Lake IL 0.6 16 May 2019 23 November 2019 26 63

Lake Defiance IL 0.3 15 May 2019 26 December 2019 56 63

Gages Lake IL 0.6 13 May 2019 23 November 2019 26 91

Hastings Lake IL 0.3 14 May 2019 11 January 2020 97 112

Herrick Lake IL 0.05 23 May 2019 31 January 2020 89 88

Harrier Lake IL 0.08 29 May 2019 21 November 2019 28 63

Lake Killarney IL 0.2 15 May 2019 11 December 2019 22 63

Highland Lake IL 0.4 14 May 2019 21 September 2019 23 91

East Loon Lake IL 0.8 14 May 2019 15 January 2020 41 87

West Loon Lake IL 0.7 14 May 2015 15 January 2020 NA 87

Lily Lake IL 0.4 15 May 2019 17 December 2019 26 88

McCullom Lake IL 1.0 15 May 2019 5 November 2019 16 102

Maple Lake IL 0.2 16 May 2019 11 January 2020 26 102

Deep Quarry Lake IL 0.1 29 May 19 5 November 2019 38 88

Round Lake IL 1.0 14 May 2019 26 December 2019 64 91

Silver Lake IL 0.2 16 May 19 1 January 2020 33 88

Timber Lake IL 0.3 14 May 2019 26 December 2019 45 87

Grays Lake IL 0.3 13 May 19 11 January 2020 42 91

Archibald Lake WI 1.6 26 April 2016 07 May 2019 92 84

Axhandle Lake WI 0.3 13 July 2015 5 October 2017 29 92

Bass Lake WI 0.3 13 August 2015 20 October 2016 39 58

Bear Lake WI 0.1 22 June 2017 3 November 2017 12 107

Big Twin Lake WI 0.3 15 July 2016 04 May 2019 59 84

Clear Lake WI 0.3 21 June 2017 30 November 2017 24 73

Crystal Lake WI 0.1 14 July 2017 21 September 2017 10 76

Deep Lake WI 0.1 17 June 2017 06 July 2017 3 128

Des Moines Lake WI 0.9 18 April 2017 2 November 2017 28 152

Duck Lake WI 0.5 5 July 2016 23 September 2019 78 137

Grindle Lake WI 0.2 9 November 2015 10 August 2019 91 112

Horseshoe Lake WI 1.6 18 August 2015 6 June 2019 69 159

Kentuck Lake WI 4.0 05 July 2019 5 July 2019 1 101

Kilby Lake WI 0.2 20 May 2017 1 October 2017 40 120

Lake Five WI 0.4 23 May 2017 3 October 2017 19 119

Long Lake WI 1.1 18 August 2015 19 August 2019 57 159

Loon Lake WI 0.1 14 August 2015 20 October 2016 20 89

Mann Lake WI 1.0 21 May 2018 12 May 2018 1 104
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Table A1. Cont.

Lake Name Region
Approx.

Size
(km2)

Date of First Lake
Level

Measurement

Date of Last Lake
Level

Measurement
Used

Number of
Lake Level
Measure-

ments

Number of
Satellite
Images

(1 January
2015–1

February 2020)

Moose Lake WI 0.5 6 August 2016 29 September 2018 5 94

Parker Lake WI 0.2 10 June 2017 16 September 2017 14 128

Paya Lake WI 0.4 2 November 2015 20 September 2019 64 88

Phantom Lake WI 0.2 19 August 2015 6 November 2015 14 58

Poplar Lake WI 0.5 30 June 2018 11 September 2019 9 159

Sand Lake WI 3.6 18 April 2017 26 July 2017 15 120

South Neva Lake WI 0.1 30 August 2015 21 November 2016 23 152

Spur Lake WI 0.5 29 July 2019 24 September 2019 12 105

Stratton Lake WI 0.3 11 July 2017 21 September 2017 10 76

Summit Lake WI 1.1 5 April 2019 6 September 2019 17 137

Twin Lakes WI 0.05 11 June 2017 1 October 2017 16 124

Underwood Lake WI 0.2 24 August 2015 7 May 2019 9 165

Wheeler Lake WI 1.1 26 August 2015 7 May 2019 46 84

Wolf Lake WI 0.1 22 June 2017 3 November 2017 13 98

References
1. MEA. Millennium Ecosystem Assessment Global Assessment Reports; Island Press: Washington, DC, USA, 2005.
2. Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van

Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [CrossRef]
3. Williamson, C.; Saros, J.; Vincent, W.; Smol, J. Lakes and reservoirs as sentinels, integrators, and regulators of climate change.

Limnol. Oceanogr. 2009, 54, 2273–2282. [CrossRef]
4. IPCC. Intergovernmental Panel on Climate Change Fifth Assessment Report, 5th ed.; The Intergovernmental Panel on Climate Change:

Washington, DC, USA, 2014.
5. Wang, J.; Song, C.; Reager, J.; Yao, F.; Familietti, J.; Sheng, Y.; MacDonald, G.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent

global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 929–932. [CrossRef]
6. Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.;

Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51,
2388–2397. [CrossRef]

7. Stanley, E.H.; Collins, S.M.; Lotting, N.R.; Oliver, S.K.; Webster, K.E.; Cheruvelil, K.S.; Soranno, P.A. Biases in lake water quality
sampling and implications for macroscale research. Limnol. Oceanogr. 2019, 64, 1572–1585. [CrossRef]

8. Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a
geo-statistical approach. Nat. Commun. 2016, 7, 13603. [CrossRef]

9. Euliss, N.H.; Mushet, D.M. Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region.
Wetlands 1996, 16, 587–593. [CrossRef]

10. Watras, C.J.; Read, J.S.; Holoman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanely, E.H. Decadal oscillation of lakes
and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications. Geophys. Res. Lett. 2014, 41,
456–462. [CrossRef]

11. Cooley, S.W.; Smith, L.C.; Ryan, J.C.; Pitcher, L.H.; Pavelsky, T.M. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery.
Geophys. Res. Lett. 2019, 46, 2111–2120. [CrossRef]

12. Lei, Y.; Yao, T.; Bird, B.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s:
Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [CrossRef]

13. Zhang, G.; Yao, T.; Shum, C.K.; Yi, K.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and
groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [CrossRef]

14. Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout
the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [CrossRef]

http://doi.org/10.4319/lo.2009.54.6_part_2.2283
http://doi.org/10.4319/lo.2009.54.6_part_2.2273
http://doi.org/10.1038/s41561-018-0265-7
http://doi.org/10.4319/lo.2006.51.5.2388
http://doi.org/10.1002/lno.11136
http://doi.org/10.1038/ncomms13603
http://doi.org/10.1007/BF03161350
http://doi.org/10.1002/2013GL058679
http://doi.org/10.1029/2018GL081584
http://doi.org/10.1016/j.jhydrol.2013.01.003
http://doi.org/10.1002/2017GL073773
http://doi.org/10.1016/j.rse.2018.12.037


Water 2021, 13, 949 21 of 22

15. Hanson, P.C.; Carpenter, S.R.; Cardille, J.A.; Coe, M.T.; Winslow, L.A. Small lakes dominate a random sample of regional lake
characteristics. Freshw. Biol. 2007, 52, 814–822. [CrossRef]

16. U.S. Geological Survey. Updated Daily. USGS Water Data for the Nation: U.S. Geological Survey National Water Information System
Database; U.S. Geological Survey: Reston, VA, USA, 2020. Available online: https://waterdata.usgs.gov/nwis (accessed on
1 December 2018).

17. Lake Level Minnesota. Available online: https://www.dnr.state.mn.us/climate/waterlevels/lakes/index.html (accessed on
27 January 2019).

18. How to Get the Numbers. Available online: https://waterdatafortexas.org/reservoirs/methodology (accessed on
10 February 2020).

19. Shiklomanov, A.I.; Lammers, R.B.; Vörösmarty, C.J. Widespread decline in hydrological monitoring threatens Pan-Arctic research.
Eos Trans. Am. Geophys. Union 2002, 83, 13–16. [CrossRef]

20. IAHS Ad Hoc Group on Global Water Data Sets. Global water data: A newly endangered species. Eos Trans. Am. Geophys. Union
2001, 8, 54–58. [CrossRef]

21. Stokstad, E. Scarcity of rain, stream gages threatens forecasts. Science 1999, 285, 1199–1200. [CrossRef]
22. Fekete, B.M.; Robarts, R.D.; Kumagai, M.; Nachtnebel, H.-P.; Odada, E.; Zhulidov, A.V. Time for in situ renaissance. Science 2015,

14, 685–686. [CrossRef]
23. Crétaux, J.-F.; Abarca-del-Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring

from Space. Surv. Geophys. 2016, 37, 269–305. [CrossRef]
24. Baup, F.; Frappart, F.; Maubant, J. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes.

Hydrol. Earth Syst. Sci. 2014, 18, 2007–2020. [CrossRef]
25. Kleinherenbrink, M.; Naeije, M.; Slobbe, C.; Egido, A.; Smith, W. The performance of CryoSat-2 fully-focused SAR for inland

water-level estimation. Remote Sens. Environ. 2020, 237, 111589. [CrossRef]
26. Arsen, A.; Crétaux, J.; Abarca-del-Rio, R. Use of SARAL/AltiKa over Mountainous Lakes, Intercomparison with Envisat Mission.

Mar. Geod. 2015, 38, 534–548. [CrossRef]
27. Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327,

399–410. [CrossRef]
28. Alsdorf, D.E.; Birkett, C.M.; Dunne, T.; Melack, J.; Hess, L. Water level changes in a large Amazon lake measured with spaceborne

radar interferometry and altimetry. Geophys. Res. Lett. 2001, 28, 2671–2674. [CrossRef]
29. Kite, G.; Pietroniro, A. Remote sensing of surface water. Remote Sens. Hydrol. Water Manag. 2000, 42, 217–238.
30. Peckel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.

Nature 2016, 540, 418–422. [CrossRef] [PubMed]
31. Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental

scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2016, 185, 129–141. [CrossRef]
32. Lowery, C.S.; Fienen, M.N. CrowdHydrology: Crowdsourcing Hydrologic Data and Engaging Citizen Scientists. Groundwater

2012, 51, 151–156. [CrossRef]
33. Buytaert, W.; Zulkafli, Z.; Grainger, S.; Acosta, L.; Alemie, T.C.; Bastiaensen, J.; Bievre, B.D.; Bhusal, J.; Clark, J.; Dewulf, A.; et al.

Citizen Science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and
sustainable development. Front. Earth Sci. 2014, 2, 26. [CrossRef]

34. Lowery, C.S.; Fienen, M.N.; Hall, D.D.; Stepenuck, K.F. Growing Pains of Crowdsourced Stream Stage Monitoring Using Mobile
Phones: The Development of CrowdHydrology. Front. Earth Sci. 2019, 7, 164–169. [CrossRef]

35. Strobl, B.; Etter, S.; van Meerveld, I.; Seibert, J. The CrowdWater game: A playful way to improve the accuracy of crowdsourced
water level class data. PLoS ONE 2019, 14, e0222579. [CrossRef]

36. McDonald, C.P.; Rover, J.A.; Stets, E.G.; Striegl, R.G. The regional abundance and size distribution of lakes and reservoirs in the
United States and implications for estimates of the global lake extent. Limnol. Oceanogr. 2012, 57, 597–606. [CrossRef]

37. Lake Observations by Citizen Scientists and Satellites. Available online: www.locss.org (accessed on 15 August 2018).
38. Citizen Lake Monitoring Network. Available online: https://dnr.wi.gov/lakes/clmn/ (accessed on 26 October 2018).
39. Pavelsky, T.; Ghafoor, S.; Hossain, F.; Parkins, G.; Yelton, S.; Little, S.; Topp, S.; Rodgers, M.; Yang, X. Monitoring the World’s

Lakes: Progress from Citizen Science and Remote Sensing. 2019. Available online: https://pubs.awma.org/flip/EM-Nov-2019
/pavelsky.pdf (accessed on 1 March 2021).

40. Pitcher, L.H.; Smith, L.C.; Cooley, S.W.; Zaino, A.; Carlson, R.; Pettit, J.; Gleason, C.J.; Minear, T.; Fayne, J.V.; Harlan, M.E.; et al.
Advancing field-based GNSS surveying for validation of remotely sensed water surface elevation products. Front. Earth Sci. 2020,
8, 278. [CrossRef]

41. Cohen, J.P. Citizen science: Can volunteers do real research? BioScience 2008, 58, 192. [CrossRef]
42. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
43. Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018,

10, 1509. [CrossRef]
44. Simley, J.D.; Carswell, W.J., Jr. The National Map–Hydrography: U.S. Geological Survey Fact Sheet 2009–3054; U.S. Department of the

Interior, U.S. Geological Survey: Washington, DC, USA, 2009.

http://doi.org/10.1111/j.1365-2427.2007.01730.x
https://waterdata.usgs.gov/nwis
https://www.dnr.state.mn.us/climate/waterlevels/lakes/index.html
https://waterdatafortexas.org/reservoirs/methodology
http://doi.org/10.1029/2002EO000007
http://doi.org/10.1029/01EO00031
http://doi.org/10.1126/science.285.5431.1199
http://doi.org/10.1126/science.aac7358
http://doi.org/10.1007/s10712-016-9362-6
http://doi.org/10.5194/hess-18-2007-2014
http://doi.org/10.1016/j.rse.2019.111589
http://doi.org/10.1080/01490419.2014.1002590
http://doi.org/10.1016/j.jhydrol.2005.11.041
http://doi.org/10.1029/2001GL012962
http://doi.org/10.1038/nature20584
http://www.ncbi.nlm.nih.gov/pubmed/27926733
http://doi.org/10.1016/j.rse.2015.12.041
http://doi.org/10.1111/j.1745-6584.2012.00956.x
http://doi.org/10.3389/feart.2014.00026
http://doi.org/10.3389/feart.2019.00128
http://doi.org/10.1371/journal.pone.0222579
http://doi.org/10.4319/lo.2012.57.2.0597
www.locss.org
https://dnr.wi.gov/lakes/clmn/
https://pubs.awma.org/flip/EM-Nov-2019/pavelsky.pdf
https://pubs.awma.org/flip/EM-Nov-2019/pavelsky.pdf
http://doi.org/10.3389/feart.2020.00278
http://doi.org/10.1641/B580303
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.3390/rs10101509


Water 2021, 13, 949 22 of 22

45. Jones, J.W. Improvised Automated Detection of Subpizel-Scale Inundation–Revised Dynamic Surface Water Extent (DSWE)
Partial Surface Water Tests. Remote Sens. 2019, 11, 374. [CrossRef]

46. Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of Sentinel-2A and
Landsat-8 top of atmosphere, surface, and nadir NRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018,
215, 482–494. [CrossRef]

47. Ahmad, S.K.; Hossain, F.; Eldardiry, H.; Pavelsky, T.M. A Fusion Approach for Water Area Classification using Visible, Near In-
frared and Synthetic Aperture Radar for South Asian Conditions. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2471–2480. [CrossRef]

48. Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Laue, B. Cloud detection algorithm comparison and
validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [CrossRef]

49. Planet Team. Planet Application Program Interface: In Space for Life on Earth; Planet Team: San Francisco, CA, USA, 2017; Available
online: https://api.planet.com (accessed on 1 March 2021).

50. Cooley, S.W.; Smith, L.C.; Stephan, L.; Mascaro, J. Tracking Dynamic Northern Surface Water Change with High-Frequency Planet
CubeSat Imagery. Remote Sens. 2017, 9, 1306. [CrossRef]

51. Quellec, M.; Crétaux, J.-F. Progress in Lake Water Storage Algorithms; SWOT Science Team: Pasadena, CA, USA, 2018.
52. Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface water monitoring in small water bodies:

Potential and limits of multi-sensor Landsat time series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [CrossRef]
53. Medina, C.; Gomez-Enri, J.; Alonso, J.J.; Villares, P. Water volume variations in Lake Izabal (Guatemala) from in situ measurements

and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products. J. Hydrol. 2009, 382,
34–48. [CrossRef]

54. Liebe, J.; van de Giesen, N.; Andrenini, M. Estimation of small reservoir storage capacities in a semi-arid environment.
Phys. Chem. Earth 2005, 30, 448–454. [CrossRef]

55. Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [CrossRef]
56. Perales, K.M.; Hein, C.L.; Lottig, N.R.; Zanden, M.J.V. Lake water level response to drought in a lake-rich region explained by

lake and landscape characteristics. Can. J. Fish. Aquat. Sci. 2020, 77, 1836–1845. [CrossRef]
57. Lottig, N.R.; Tan, P.-N.; Wagner, T.; Cheruvelil, K.S.; Soranno, P.A.; Stanley, E.H.; Scott, C.E.; Stow, C.A.; Yuan, S. Macroscale

patterns of synchrony identify complex relationships among spatial and temporal ecosystem drivers. Ecosphere 2017,
8, e02024. [CrossRef]

58. Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys.
2016, 37, 307–337. [CrossRef]

http://doi.org/10.3390/rs11040374
http://doi.org/10.1016/j.rse.2018.04.031
http://doi.org/10.1109/TGRS.2019.2950705
http://doi.org/10.1016/j.rse.2017.03.026
https://api.planet.com
http://doi.org/10.3390/rs9121306
http://doi.org/10.5194/hess-22-4349-2018
http://doi.org/10.1016/j.jhydrol.2009.12.016
http://doi.org/10.1016/j.pce.2005.06.011
http://doi.org/10.2307/1412159
http://doi.org/10.1139/cjfas-2019-0270
http://doi.org/10.1002/ecs2.2024
http://doi.org/10.1007/s10712-015-9346-y

	Introduction 
	Study Areas 
	Methods 
	Measuring Lake Water Levels 
	Data Acquisition 
	GPS Processing 
	Validation 

	Measuring Lake Surface Area 
	Data Acquisition 
	Water Mask 
	Validation 

	Measuring Lake Water Storage 
	Calculation of Lake Water Storage 
	Hypsometric Curve 
	Propagation of Lake Height Errors into Volume Variations 

	Correlations between Change in Lake Water Storage 
	Data Acquisition 
	Validation 

	Spatial Analysis 

	Results 
	Validation Results 
	Citizen Science Data 
	Lake Surface Area 
	Lake Volume Correlations 

	Variations in Lake Water Storage 
	Regional Coherence of Changes in Lake Water Volume 
	Correlations and Relationship with Distance 


	Discussion 
	
	References

