57 research outputs found

    Tricarbonyl M(I) (M = Re, 99mTc) complexes bearing acridine fluorophores : synthesis, characterization, DNA interaction studies and nuclear targeting

    Get PDF
    © The Royal Society of Chemistry 2010New pyrazolyl-diamine ligands with acridine derivatives at the 4-position of the pyrazolyl ring were synthesized and characterized (L1 and L2). Coordination towards the fac-[M(CO)3]+ (M = Re, 99mTc) led to complexes fac-[M(CO)3(κ3-L)] (L = L1: M = Re1, Tc1; L = L2: M = Re2, Tc2). The interaction of the novel pyrazolyl-diamine ligands (L1 and L2) and rhenium(I) complexes (Re1 and Re2) with calf thymus DNA (CT-DNA) was investigated by a variety of techniques, namely UV-visible , fluorescence spectroscopy and circular and linear dichroism . Compounds L1 and Re1 have moderate affinity to CT-DNA and bind to DNA by intercalation, while L2 and Re2 have a poor affinity for CT-DNA. Moreover, LD measurements showed that L1 and Re1 act as perfect intercalators . By confocal fluorescence microscopy we found that L1 and Re1 internalize and localize in the nucleus of B16F1 murine melanoma cells . The congener Tc1 complex also targets the cell nucleus exhibiting a time-dependent cellular uptake and a fast and high nuclear internalization (67.2% of activity after 30 min). Plasmid DNA studies have shown that Tc1 converts supercoiled (sc) puc19 DNA to the open circular (oc) form.Teresa Esteves and Sofia Gama thank the FCT for a doctoral and postdoctoral research grants (SFRH/BD/29154/2006 and SFRH/BPD/29564/2006, respectively). COST Action D39 is also acknowledge. The QITMS instrument was acquired with the support of the Programa Nacional de Reequipamento Científico (Contract>REDE/1503/REM/2005-ITN) of Fundação para a Ciência e a Tecnologia and is part of RNEM - Rede Nacional de Espectrometria de Massa

    Molecular characterization of Glaesserella parasuis strains circulating in North American swine production systems

    Get PDF
    Background Glaesserella parasuis is the causative agent of Glässer’s disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 feld clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. Results In silico WGS serotyping identifed 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identifed 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Coregenome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were signifcantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency; blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3’’Ia (0.5%). Conclusion This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These fndings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.This study was funded in part by PIC North America.info:eu-repo/semantics/publishedVersio

    The Sample Analysis at Mars Investigation and Instrument Suite

    Get PDF
    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm

    Neoliberalism as Liberation: The Statehood Program and the Remaking of the Palestinian National Movement

    Get PDF
    The Palestinian statehood-by-2011 program, framed through neoliberal institution building, redefines and diverts the Palestinian liberation struggle. Focusing on its economic aspects, and in particular the underlying neoliberal thought that goes beyond narrow economic policy applications, this essay argues that the program cannot succeed either as the midwife of independence or as a strategy for Palestinian economic development. Its weaknesses, the authors contend, derive not only from neoliberalism’s inability to deliver sustainable and equitable economic growth worldwide, but also because neoliberal “governance” under occupation, however “good,” cannot substitute for the broader struggle for national rights nor ensure the Palestinian right to development

    Monitoring emerging pathogens using negative nucleic acid test results from endemic pathogens in pig populations: Application to porcine enteric coronaviruses

    Get PDF
    This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA’s fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.This article is published as Serafini Poeta Silva, Ana Paula, Guilherme Arruda Cezar, Edison Sousa Magalhães, Kinath Rupasinghe, Srijita Chandra, Gustavo S. Silva, Marcelo Almeida et al. "Monitoring emerging pathogens using negative nucleic acid test results from endemic pathogens in pig populations: Application to porcine enteric coronaviruses." PloS one 19, no. 7 (2024): e0306532. doi: https://doi.org/10.1371/journal.pone.0306532. © 2024 Serafini Poeta Silva et al. This is an open access article distributed under the terms of the (http://creativecommons.org/licenses/by/4.0/). which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes.

    Get PDF
    Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.JW is supported by a Cancer Research UK Cambridge Cancer Centre Clinical Research Training Fellowship. Funding for the NIHR BioResource – Rare diseases project was provided by the National Institute for Health Research (NIHR, grant number RG65966). ERM acknowledges support from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre), Cancer Research UK Cambridge Cancer Centre and Medical Research Council Infrastructure Award. The University of Cambridge has received salary support in respect of EM from the NHS in the East of England through the Clinical Academic Reserve. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. DGE is an NIHR Senior Investigator and is supported by the all Manchester NIHR Biomedical Research Centre

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link
    corecore