29 research outputs found

    Emergent Prophylactic, Reparative and Restorative Brain Interventions for Infants Born Preterm With Cerebral Palsy

    Get PDF
    Worldwide, an estimated 15 million babies are born preterm (<37 weeks' gestation) every year. Despite significant improvements in survival rates, preterm infants often face a lifetime of neurodevelopmental disability including cognitive, behavioral, and motor impairments. Indeed, prematurity remains the largest risk factor for the development of cerebral palsy. The developing brain of the preterm infant is particularly fragile; preterm babies exhibit varying severities of cerebral palsy arising from reductions in both cerebral white and gray matter volumes, as well as altered brain microstructure and connectivity. Current intensive care therapies aim to optimize cardiovascular and respiratory function to protect the brain from injury by preserving oxygenation and blood flow. If a brain injury does occur, definitive diagnosis of cerebral palsy in the first few hours and weeks of life is difficult, especially when the lesions are subtle and not apparent on cranial ultrasound. However, early diagnosis of mildly affected infants is critical, because these are the patients most likely to respond to emergent treatments inducing neuroplasticity via high-intensity motor training programs and regenerative therapies involving stem cells. A current controversy is whether to test universal treatment in all infants at risk of brain injury, accepting that some patients never required treatment, because the perceived potential benefits outweigh the risk of harm. Versus, waiting for a diagnosis before commencing targeted treatment for infants with a brain injury, and potentially missing the therapeutic window. In this review, we discuss the emerging prophylactic, reparative, and restorative brain interventions for infants born preterm, who are at high risk of developing cerebral palsy. We examine the current evidence, considering the timing of the intervention with relation to the proposed mechanism/s of action. Finally, we consider the development of novel markers of preterm brain injury, which will undoubtedly lead to improved diagnostic and prognostic capability, and more accurate instruments to assess the efficacy of emerging interventions for this most vulnerable group of infants

    Corticospinal tract integrity and motor function following neonatal stroke: a case study

    Get PDF
    Background: New MRI techniques enable visualisation of corticospinal tracts and cortical motor activity. The objective of this case study was to describe the magnetic resonance evidence of corticospinal pathway reorganisation following neonatal stroke. Case presentation: An 11 year old boy with a neonatal right middle cerebral artery territory ischaemic stroke was studied. Functional MRI was undertaken with a whole hand squeezing task, comparing areas of cortical activation between hands. White matter tracts, seeded from the area of peak activation in the cortex, were visualised using a diffusion weighted imaging probabilistic tractography method. Standardised evaluations of unilateral and bilateral motor function were undertaken. Clinically, the child presented with a left hemiparesis. Functional MRI demonstrated that movement of the hemiparetic hand resulted in activation in the ipsi-lesional (right) hemisphere only. Diffusion tractography revealed pathways in the right (lesioned) hemisphere tracked perilesionally to the cortical area identified by functional MRI. Conclusion: Our case demonstrates that neonatal stroke is associated with maintenance of organization of corticospinal pathways sufficient to maintain some degree of hand function in the affected hemisphere. Functional MRI and diffusion weighted imaging tractography may inform our understanding of recovery, organisation and reorganisation and have the potential to monitor responses to intervention following neonatal stroke

    The cause-specific morbidity and mortality, and referral patterns of all neonates admitted to a tertiary referral hospital in the northern provinces of Vietnam over a one year period.

    Get PDF
    OBJECTIVE: To describe the cause-specific morbidity and mortality, and referral patterns of all neonates admitted to a tertiary referral hospital in the northern provinces of Vietnam. DESIGN: A prospective hospital based observational study. SETTING: The Neonatal Department, National Hospital of Pediatrics, Hanoi, Vietnam. PATIENTS: All admissions to the Neonatal Department over a 12 month period. MAIN OUTCOME MEASURES: Cause-specific morbidity and mortality; deaths. RESULTS: There were 5064 admissions with the commonest discharge diagnoses being infection (32%) and prematurity (29%). The case fatality ratio (CFR) was 13.9% (n = 703). Infection (38%), cardio/respiratory disorders (27%), congenital abnormalities (20%) and neurological conditions (10%) were the main causes of death. Of all the deaths, 38% had an admission weight ≥2500g. Higher CFR were associated with lower admission weights. Very few deaths (3%) occurred in the first 24 hours of life. Most referrals and deaths came from Hanoi and neighbouring provincial hospitals, with few from the most distant provinces. Two distant referral provinces had the highest CFR. CONCLUSIONS: The CFR was high and few deaths occurred in neonates <24 hours old. The high rates of infection call for an improvement in infection control practices and peripartum antibiotic use at provincial and tertiary level. Understanding provincial hospital capacity and referral pathways is crucial to improving the outcomes at tertiary centres. A quality of care audit tool would enable more targeted interventions and monitoring of health outcomes

    Prognostic utility of magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: substudy of a randomized trial

    Get PDF
    Objective: To investigate the effects of hypothermia treatment on magnetic resonance imaging (MRI) patterns of brain injury in newborns with hypoxic-ischemic encephalopathy compared with normothermia, including the prognostic utility of MRI for death and/or disability at a postnatal age of 2 years

    Effect of treatment of clinical seizures vs electrographic seizures in full-term and near-term neonates : a randomized clinical trial

    Get PDF
    Importance: Seizures in the neonatal period are associated with increased mortality and morbidity. Bedside amplitude-integrated electroencephalography (aEEG) has facilitated the detection of electrographic seizures; however, whether these seizures should be treated remains uncertain. Objective: To determine if the active management of electrographic and clinical seizures in encephalopathic term or near-term neonates improves survival free of severe disability at 2 years of age compared with only treating clinically detected seizures. Design, Setting, and Participants: This randomized clinical trial was conducted in tertiary newborn intensive care units recruited from 2012 to 2016 and followed up until 2 years of age. Participants included neonates with encephalopathy at 35 weeks’ gestation or more and younger than 48 hours old. Data analysis was completed in April 2021. Interventions: Randomization was to an electrographic seizure group (ESG) in which seizures detected on aEEG were treated in addition to clinical seizures or a clinical seizure group (CSG) in which only seizures detected clinically were treated. Main Outcomes and Measures: Primary outcome was death or severe disability at 2 years, defined as scores in any developmental domain more than 2 SD below the Australian mean assessed with Bayley Scales of Neonate and Toddler Development, 3rd ed (BSID-III), or the presence of cerebral palsy, blindness, or deafness. Secondary outcomes included magnetic resonance imaging brain injury score at 5 to 14 days, time to full suck feeds, and individual domain scores on BSID-III at 2 years. Results: Of 212 randomized neonates, the mean (SD) gestational age was 39.2 (1.7) weeks and 122 (58%) were male; 152 (72%) had moderate to severe hypoxic-ischemic encephalopathy (HIE) and 147 (84%) had electrographic seizures. A total of 86 neonates were included in the ESG group and 86 were included in the CSG group. Ten of 86 (9%) neonates in the ESG and 4 of 86 (4%) in the CSG died before the 2-year assessment. The odds of the primary outcome were not significantly different in the ESG group compared with the CSG group (ESG, 38 of 86 [44%] vs CSG, 27 of 86 [31%]; odds ratio [OR], 1.83; 95% CI, 0.96 to 3.49; P = .14). There was also no significant difference in those with HIE (OR, 1.77; 95% CI, 0.84 to 3.73; P = .26). There was evidence that cognitive outcomes were worse in the ESG (mean [SD] scores, ESG: 97.4 [17.7] vs CSG: 103.8 [17.3]; mean difference, −6.5 [95% CI, −1.2 to −11.8]; P = .01). There was little evidence of a difference in secondary outcomes, including time to suck feeds, seizure burden, or brain injury score. Conclusions and Relevance: Treating electrographic and clinical seizures with currently used anticonvulsants did not significantly reduce the rate of death or disability at 2 years in a heterogeneous group of neonates with seizures

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research

    Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

    Full text link

    Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis

    Get PDF
    <div><p>Background</p><p>Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models.</p><p>Methods</p><p>Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks.</p><p>Results</p><p>With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice.</p><p>Conclusions</p><p>Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.</p></div

    Characterising the ambient sound environment for infants in intensive care wards

    No full text
    Aim The purpose of this study is to characterise ambient sound levels of paediatric and neonatal intensive care units in an old and new hospital according to current standards. Methods The sound environment was surveyed for 24-h data collection periods (n = 80) in the Neonatal and Paediatric Intensive Care Units (NICUs and PICUs) and Special Care Nursery of the old and new Royal Children's Hospital Melbourne. The ambient sound environment was characterised as the proportion of time the ongoing ambient sound met standard benchmarks, the mean 5-s sound levels and the number and duration of noise events. Results In the old hospital, none of the data collection periods in the NICU and PICU met the standard benchmark for ongoing ambient sound, while only 5 of the 22 data collection periods in the new hospital met the recommended level. There was no change in proportion of time at recommended L between the old and the new Special Care Nursery. There was strong evidence for a difference in the mean number of events >65 dBA (L) in the old and new hospital (rate ratio = 0.82, 95% confidence interval: 0.73 to 0.92, P = 0.001). The NICU and PICU were above 50 dBA in 75% of all data collection periods, with ventilatory equipment associated with higher ongoing ambient sound levels. Conclusions The ongoing ambient sound suggests that the background sound environment of the new hospital is not different to the old hospital. However, there may be a reduction in the number of noise events
    corecore