13 research outputs found

    A Low Latitude Halo Stream around the Milky Way

    Get PDF
    We present evidence for a ring of stars in the plane of the Milky Way, extending at least from l = 180 deg to l = 227 deg; the ring could encircle the Galaxy. The low Galactic latitude structure is at a fairly constant distance of R=18±2R = 18 \pm 2 kpc from the Galactic Center above the Galactic plane, and has R=20±2R = 20 \pm 2 kpc in the region sampled below the Galactic plane. The evidence includes five hundred SDSS spectroscopic radial velocities of stars within 30 deg of the plane. The velocity dispersion of the stars associated with this structure is found to be 27 km/s at (l,b) = (198,-27), 22 km/s at (l,b) = (225, 28), 30 km/s at (l,b) = (188, 24), and 30 km/s at (l,b) = (182, 27) degrees. The structure co-rotates with the Galactic disk stars at 110±25110 \pm 25 km/s. The narrow measured velocity dispersion is inconsistent with power law spheroid or thick disk populations. We compare the velocity dispersion in this structure with the velocity dispersion of stars in the Sagittarius dwarf galaxy tidal stream, for which we measure a velocity dispersion of 20 km/s at (l,b) = (165, -55) degrees. We interpret our measurements as evidence for a tidally disrupted satellite of 2×1072 \times 10^7 to 5×1085 \times 10^8 solar masses which rings the Galaxy

    Touching The Void: A Striking Drop in Stellar Halo Density Beyond 50 kpc

    Get PDF
    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch (BHB) and blue straggler (BS) stars. In the magnitude range, 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 kpc < D_BS < 75 kpc, 40 kpc < D_BHB < 100 kpc. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index alpha ~ 6 beyond Galactocentric radii r=50 kpc, and even steeper slopes favored (alpha ~ 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several Gyr. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass-estimates.Comment: 17 pages, 16 figures. Accepted for publication by ApJ. References update

    A ``Light,'' Centrally Concentrated Milky Way Halo?

    No full text
    We discuss a novel approach to "weighing" the Milky Way (MW) dark matter halo, one that combines the latest samples of halo stars selected from the Sloan Digital Sky Survey (SDSS) with state of the art numerical simulations of MW analogs. The fully cosmological runs employed in the present study include "Eris," one of the highest resolution hydrodynamical simulations of the formation of a M vir = 8 × 1011 M ⊙ late-type spiral, and the dark-matter-only M vir = 1.7 × 1012 M ⊙ "Via Lactea II" (VLII) simulation. Eris provides an excellent laboratory for creating mock SDSS samples of tracer halo stars, and we successfully compare their density, velocity anisotropy, and radial velocity dispersion profiles with the observational data. Most mock SDSS realizations show the same "cold veil" recently observed in the distant stellar halo of the MW, with tracers as cold as σlos ≈ 50 km s-1 between 100 and 150 kpc. Controlled experiments based on the integration of the spherical Jeans equation as well as a particle tagging technique applied to VLII show that a "heavy" M vir ≈ 2 × 1012 M ⊙ realistic host produces a poor fit to the kinematic SDSS data. We argue that these results offer added evidence for a "light," centrally concentrated MW halo

    Isotropic at the Break? 3D Kinematics of Milky Way Halo Stars in the Foreground of M31

    Get PDF
    We present the line-of-sight (LOS) velocities for 13 distant main sequence Milky Way halo stars with published proper motions. The proper motions were measured using long baseline (5-7 years) multi-epoch HST/ACS photometry, and the LOS velocities were extracted from deep (5-6 hour integrations) Keck II/DEIMOS spectra. We estimate the parameters of the velocity ellipsoid of the stellar halo using a Markov chain Monte Carlo ensembler sampler method. The velocity second moments in the directions of the Galactic (l,b, LOS) coordinate system are ⟨v2l⟩1/2=138+43−26 km/s, ⟨v2b⟩1/2=88+28−17 km/s, and ⟨v2LOS⟩1/2=91+27−14 km/s. We use these ellipsoid parameters to constrain the velocity anisotropy of the stellar halo. Ours is the first measurement of the anisotropy parameter β using 3D kinematics outside of the solar neighborhood. We find β=−0.3+0.4−0.9, consistent with isotropy and lower than solar neighborhood β measurements by 2σ (βSN∼0.5−0.7). We identify two stars in our sample that are likely members of the known TriAnd substructure, and excluding these objects from our sample increases our estimate of the anisotropy to β=0.1+0.4−1.0, which is still lower than solar neighborhood measurements by 1σ. The potential decrease in β with Galactocentric radius is inconsistent with theoretical predictions, though consistent with recent observational studies, and may indicate the presence of large, shell-type structure (or structures) at r∼25 kpc. The methods described in this paper will be applied to a much larger sample of stars with 3D kinematics observed through the ongoing HALO7D program

    SDSS-III : massive spectroscopic surveys of the distant universe, the Milk Way, and extra-solar planetary systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z ≈ 2.5. SEGUE- 2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = λ/Δλ ≈ 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R ≈ 30,000), high signal-to-noise ratio (S/N 100 per resolution element), H-band (1.51μm < λ < 1.70μm) spectra of 105 evolved, late-type stars, measuring separate abundances for ∼15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10–40ms−1, ∼24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS

    The ninth data release of the Sloan Digital Sky Survey : first spectroscopic data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z ∼ 0.52), 102,100 new quasar spectra (median z ∼ 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with Teff −0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December

    The eleventh and twelfth data releases of the Sloan Digital Sky Survey : final data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new nearinfrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra

    The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary

    Get PDF
    The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation

    SDSS-III : massive spectroscopic surveys of the distant universe, the Milk Way, and extra-solar planetary systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z ≈ 2.5. SEGUE- 2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = λ/Δλ ≈ 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R ≈ 30,000), high signal-to-noise ratio (S/N 100 per resolution element), H-band (1.51μm < λ < 1.70μm) spectra of 105 evolved, late-type stars, measuring separate abundances for ∼15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10–40ms−1, ∼24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS

    The ninth data release of the Sloan Digital Sky Survey : first spectroscopic data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    No full text
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z ∼ 0.52), 102,100 new quasar spectra (median z ∼ 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with Teff −0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December
    corecore