666 research outputs found

    Tri-n-butyltin Hydride-Mediated Radical Reactions of ortho- and meta-Iodobenzamides to Synthesize Benzomacrolactams. Surprising Formation of Biphenyl Compounds from meta-Regioisomers

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Reactions of methyl 4-O-allyl-2,3-di-O-benzyl-6-deoxy-6-(3-iodobenzoylamino)-alpha-D-galactopyranoside, its gluco epimer, methyl 2,3-di-O-benzyl-6-deoxy-6-(3-iodobenzoylamino)4-O-(1-pentenyl)-alpha-D-glucopyranoside and its ortho-regioisomer with tri-n-butyltin hydride were performed in different conditions. Depending on reaction conditions the three meta-iodo isomers gave a surprising amount of biphenyl compounds. The 2-iodo isomer led only to the undesired but expected hydrogenolysis product. No cyclized products were isolated in all the reactions. The structures of the new biphenyl products were elucidated by (1)H and (13)C NMR spectroscopy, DEPT, COSY, HMQC and HMBC experiments and ESI-MS/MS. Mechanisms for the formation of these new biphenyl derivatives and hypotheses to explain the different outcomes for radical reactions of 3- or 2-iodobenzamides were presented.20815041514Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Conditions for the Evolution of Gene Clusters in Bacterial Genomes

    Get PDF
    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters

    Nest Architecture, Colony Productivity, and Duration of Immature Stages in a Social Wasp, Mischocyttarus consimilis

    Get PDF
    This study examined the nest architecture, colony productivity, and duration of the immature stages of the social wasp Mischocyttarus consimilis Zikáán (Hymenoptera: Vespidae). The study was carried out under field conditions. Nests of M. consimilis consist of a single uncovered comb, which is attached to the substratum by a single petiole. The data for the nest architecture showed a positive and significant correlation between the size of the comb and the diameter of the petiole, and also between the height and diameter of the cells. The nests were constructed on horizontal, vertical, and sloping substrata with no apparent preference for a specific orientation. The colonies produced 72.9 cells and 40.7 adults on average. The mean frequency of productive cells was 33.3%, and 19.4% of the cells were reused. The mean duration of the immature stages combined was 69.7 days and the egg, larval, and pupal stages had mean durations of 14.9, 36.0, and 18.8 days, respectively. The duration of each immature stage was significantly shorter in the warmhumid season, and the larval and pupal stages were shorter during the colony pre-emergence stage

    The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease

    Controlling spins in adsorbed molecules by a chemical switch

    Get PDF
    The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect

    Satisfaction survey with DNA cards method to collect genetic samples for pharmacogenetics studies

    Get PDF
    BACKGROUND: Pharmacogenetic studies are essential in understanding the interindividual variability of drug responses. DNA sample collection for genotyping is a critical step in genetic studies. A method using dried blood samples from finger-puncture, collected on DNA-cards, has been described as an alternative to the usual venepuncture technique. The purpose of this study is to evaluate the implementation of the DNA cards method in a multicentre clinical trial, and to assess the degree of investigators' satisfaction and the acceptance of the patients perceived by the investigators. METHODS: Blood samples were collected on DNA-cards. The quality and quantity of DNA recovered were analyzed. Investigators were questioned regarding their general interest, previous experience, safety issues, preferences and perceived patient satisfaction. RESULTS: 151 patients' blood samples were collected. Genotyping of GST polymorphisms was achieved in all samples (100%). 28 investigators completed the survey. Investigators perceived patient satisfaction as very good (60.7%) or good (39.3%), without reluctance to finger puncture. Investigators preferred this method, which was considered safer and better than the usual methods. All investigators would recommend using it in future genetic studies. CONCLUSION: Within the clinical trial setting, the DNA-cards method was very well accepted by investigators and patients (in perception of investigators), and was preferred to conventional methods due to its ease of use and safety

    Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid carcinomas show a high prevalence of mutations in the oncogene BRAF which are inversely associated with RAS or RET/PTC oncogenic activation. The possibility of using inhibitors on the BRAF pathway as became an interesting therapeutic approach. In thyroid cancer cells the target molecules, implicated on the cellular effects, mediated by inhibition of BRAF are not well established. In order to fill this lack of knowledge we studied the proliferation and survival pathways and associated molecules induced by BRAF inhibition in thyroid carcinoma cell lines harbouring distinct genetic backgrounds.</p> <p>Methods</p> <p>Suppression of BRAF pathway in thyroid cancer cell lines (8505C, TPC1 and C643) was achieved using RNA interference (RNAi) for BRAF and the kinase inhibitor, sorafenib. Proliferation analysis was performed by BrdU incorporation and apoptosis was accessed by TUNEL assay. Levels of protein expression were analysed by western-blot.</p> <p>Results</p> <p>Both BRAF RNAi and sorafenib inhibited proliferation in all the cell lines independently of the genetic background, mostly in cells with BRAF<sup>V600E </sup>mutation. In BRAF<sup>V600E </sup>mutated cells inhibition of BRAF pathway lead to a decrease in ERK1/2 phosphorylation and cyclin D1 levels and an increase in p27<sup>Kip1</sup>. Specific inhibition of BRAF by RNAi in cells with BRAF<sup>V600E </sup>mutation had no effect on apoptosis. In the case of sorafenib treatment, cells harbouring BRAF<sup>V600E </sup>mutation showed increase levels of apoptosis due to a balance of the anti-apoptotic proteins Mcl-1 and Bcl-2.</p> <p>Conclusion</p> <p>Our results in thyroid cancer cells, namely those harbouring BRAF<sup>V600E</sup>mutation showed that BRAF signalling pathway provides important proliferation signals. We have shown that in thyroid cancer cells sorafenib induces apoptosis by affecting Mcl-1 and Bcl-2 in BRAF<sup>V600E </sup>mutated cells which was independent of BRAF. These results suggest that sorafenib may prove useful in the treatment of thyroid carcinomas, particularly those refractory to conventional treatment and harbouring BRAF mutations.</p

    Co-Orientation of Replication and Transcription Preserves Genome Integrity

    Get PDF
    In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization
    corecore