1,291 research outputs found

    Determinants of the implementation of a new practice in hormonal contraception by Quebec nurses

    Get PDF
    In 2007, a task-shifting strategy through which a nurse, in collaboration with a community pharmacist, could start a healthy woman on hormonal contraception without a medical consultation was implemented in the province of Quebec. The purpose of this study was to identify factors associated with the 1) implementation of this new practice by nurses, 2) delay of implementation and 3) intensity of the practice. A validated questionnaire based on Rogers' theory of the diffusion of innovation was sent by postal mail or internet to all nurses that had successfully completed training in hormonal contraception since 2007, were registered at the College of nurses of Quebec and currently worked as nurses. The questionnaire was completed by 745 nurses between November 2011 and March 2012 for a response rate of 26.6%. Results show that implementation of this new nursing practice was more successful when nurses had a high degree of cosmopoliteness, they perceived the new practice as simple, they worked in youth clinics and if health organizations where they worked were open to innovation, had low centralized decision-making and organizational slack. Various attributes of innovation, diffusion networks and characteristics of the organizations also explained intensity of the new practice. The findings suggest new avenues to simplify and scale up this strategy for use in other health organizations. </jats:p

    Lunar base CELSS: A bioregenerative approach

    Get PDF
    During the twenty-first century, human habitation of a self-sustaining lunar base could become a reality. To achieve this goal, the occupants will have to have food, water, and an adequate atmosphere within a carefully designed environment. Advanced technology will be employed to support terrestrial life-sustaining processes on the Moon. One approach to a life support system based on food production, waste management and utilization, and product synthesis is outlined. Inputs include an atmosphere, water, plants, biodegradable substrates, and manufacutured materials such as fiberglass containment vessels from lunar resources. Outputs include purification of air and water, food, and hydrogen (H2) generated from methane (CH4). Important criteria are as follows: (1) minimize resupply from Earth; and (2) recycle as efficiently as possible

    Les déterminants de la pratique infirmière en contraception hormonale au Québec.

    Get PDF

    The infrared dust bubble N22: an expanding HII region and the star formation around it

    Full text link
    Aims. To increase the observational samples of star formation around expanding Hii regions, we analyzed the interstellar medium and star formation around N22. Methods. We used data extracted from the seven large-scale surveys from infrared to radio wavelengths. In addition we used the JCMT observations of the J = 3-2 line of 12CO emission data released on CADC and the 12CO J = 2-1 and J =3-2 lines observed by the KOSMA 3 m telescope. We performed a multiwavelength study of bubble N22. Results. A molecular shell composed of several clumps agrees very well with the border of N22, suggesting that its expansion is collecting the surrounding material. The high integrated 12CO line intensity ratio (ranging from 0.7 to 1.14) implies that shocks have driven into the molecular clouds. We identify eleven possible O-type stars inside the Hii region, five of which are located in projection inside the cavity of the 20 cm radio continuum emission and are probably the exciting-star candidates of N22. Twenty-nine YSOs (young stellar objects) are distributed close to the dense cores of N22. We conclude that star formation is indeed active around N22; the formation of most of YSOs may have been triggered by the expanding of the Hii region. After comparing the dynamical age of N22 and the fragmentation time of the molecular shell, we suggest that radiation-driven compression of pre-existing dense clumps may be ongoing.Comment: accepted in A&A 30/05/2012. arXiv admin note: text overlap with arXiv:1010.5430 by other author

    Star Formation and Young Population of the HII Complex Sh2-294

    Full text link
    The Sh2-294 HII region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in the region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 HII region at 3.6, 4.5, 5.8, and 8.0 microns observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 microns) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the HII region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (< 4 solar masses) YSOs; however, we also detected a massive YSO (~9 solar masses) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed younger population of the region relative to Class II sources (age ~ 4.5 x 10^6 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the HII region powered by a ~ 4 x 10^6 yr B0 main-sequence star.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    The Spitzer Survey of the Small Magellanic Cloud: Discovery of Embedded Protostars in the HII Region NGC 346

    Get PDF
    We use Spitzer Space Telescope observations from the Spitzer Survey of the Small Magellanic Cloud (S3MC) to study the young stellar content of N66, the largest and brightest HII region in the SMC. In addition to large numbers of normal stars, we detect a significant population of bright, red infrared sources that we identify as likely to be young stellar objects (YSOs). We use spectral energy distribution (SED) fits to classify objects as ordinary (main sequence or red giant) stars, asymptotic giant branch stars, background galaxies, and YSOs. This represents the first large-scale attempt at blind source classification based on Spitzer SEDs in another galaxy. We firmly identify at least 61 YSOs, with another 50 probable YSOs; only one embedded protostar in the SMC was reported in the literature prior to the S3MC. We present color selection criteria that can be used to identify a relatively clean sample of YSOs with IRAC photometry. Our fitted SEDs indicate that the infrared-bright YSOs in N66 have stellar masses ranging from 2 Msun to 17 Msun, and that approximately half of the objects are Stage II protostars, with the remaining YSOs roughly evenly divided between Stage I and Stage III sources. We find evidence for primordial mass segregation in the HII region, with the most massive YSOs being preferentially closer to the center than lower-mass objects. Despite the low metallicity and dust content of the SMC, the observable properties of the YSOs appear consistent with those in the Milky Way. Although the YSOs are heavily concentrated within the optically bright central region of N66, there is ongoing star formation throughout the complex and we place a lower limit on the star formation rate of 3.2 x 10^-3 Msun/yr over the last ~1 Myr.Comment: 13 pages, 5 figures (3 in color), 2 tables. Accepted for publication in Ap

    Characterizing star formation activity in infrared dark cloud MSXDC G048.65-00.29

    Get PDF
    Infrared Dark Clouds (IRDCs), condensed regions of the ISM with high column densities, low temperatures and high masses, are suspected sites of star formation. Thousands of IRDCs have already been identified. To date, it has not been resolved whether IRDCs always show star formation activity and, if so, if massive star formation (> 8 solar masses) is the rule or the exception in IRDCs. Previous analysis of sub-millimeter cores in the cloud MSXDC G048.65-00.29 (G48.65) indicates embedded star formation activity. To characterize this activity in detail, mid-infrared photometry (3-30 micron) has been obtained with the Spitzer Space Telescope. This paper analyzes the point sources seen in the 24 micron band, combined with counterparts or upper limits at shorter and longer wavelengths. Data points in wavelength bands ranging from 1 up to 850 micron are used to compare each 24 micron source to a set of Spectral Energy Distributions of Young Stellar Object (YSO) models. By assessing the models that fit the data, an attempt is made to identify YSOs as such and determine their evolutionary stages and stellar masses. A total of 17 sources are investigated, 13 of which are classified as YSOs, primarily - but not exclusively - in an early embedded phase of star formation. The modeled masses of the central stellar objects range from sub-solar to ~8 solar masses. Every YSO is at less than 1 pc projected distance from its nearest YSO neighbor. We conclude that IRDC G48.65 is a region of active star formation. We find YSOs in various evolutionary phases, indicating that the star formation in this cloud is not an instantaneous process. The inferred masses of the central objects suggest that this IRDC hosts only low to intermediate mass YSOs and none with masses exceeding ~8 solar masses.Comment: 10 pages, 6 figures; v2: minor editorial changes to match published versio

    SOFIA/FORCAST and Spitzer/IRAC Imaging of the Ultra Compact H II Region W3(OH) and Associated Protostars in W3

    Full text link
    We present infrared observations of the ultra-compact H II region W3(OH) made by the FORCAST instrument aboard SOFIA and by Spitzer/IRAC. We contribute new wavelength data to the spectral energy distribution, which constrains the optical depth, grain size distribution, and temperature gradient of the dusty shell surrounding the H II region. We model the dust component as a spherical shell containing an inner cavity with radius ~ 600 AU, irradiated by a central star of type O9 and temperature ~ 31,000 K. The total luminosity of this system is 71,000 L_solar. An observed excess of 2.2 - 4.5 microns emission in the SED can be explained by our viewing a cavity opening or clumpiness in the shell structure whereby radiation from the warm interior of the shell can escape. We claim to detect the nearby water maser source W3 (H2O) at 31.4 and 37.1 microns using beam deconvolution of the FORCAST images. We constrain the flux densities of this object at 19.7 - 37.1 microns. Additionally, we present in situ observations of four young stellar and protostellar objects in the SOFIA field, presumably associated with the W3 molecular cloud. Results from the model SED fitting tool of Robitaille et al. (2006, 2007} suggest that two objects (2MASS J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity (~ 236 - 432 L_solar) protostars; one object (2MASS J02270887+6152344) is either a high-mass protostar with luminosity 3000 L_solar or a less massive young star with a substantial circumstellar disk but depleted envelope; and one object (2MASS J02270743+6152281) is an intermediate-luminosity (~ 768 L_solar) protostar nearing the end of its envelope accretion phase or a young star surrounded by a circumstellar disk with no appreciable circumstellar envelope.Comment: 12 pages, 8 figures, 2 tables, accepted by Ap

    Star Formation in the Milky Way. The Infrared View

    Full text link
    I present a brief review of some of the most recent and active topics of star formation process in the Milky Way using mid and far infrared observations, and motivated by the research being carried out by our science group using data gathered by the Spitzer and Herschel space telescopes. These topics include bringing together the scaling relationships found in extragalactic systems with that of the local nearby molecular clouds, the synthetic modeling of the Milky Way and estimates of its star formation rate.Comment: 12 pages, 9 figures. To apper in "Cosmic-ray induced phenomenology in star-forming environments: Proceedings of the 2nd Session of the Sant Cugat Forum of Astrophysics" (April 16-19, 2012), Olaf Reimer and Diego F. Torres (eds.
    corecore