4,047 research outputs found

    Effect of Temperature on Heart Rate for \u3cem\u3ePhaenicia sericata\u3c/em\u3e and \u3cem\u3eDrosophila melanogaster\u3c/em\u3e with Altered Expression of the TrpA1 Receptors

    Get PDF
    The transient receptor potential (TrpA—ankyrin) receptor has been linked to pathological conditions in cardiac function in mammals. To better understand the function of the TrpA1 in regulation of the heart, a Drosophila melanogaster model was used to express TrpA1 in heart and body wall muscles. Heartbeat of in intact larvae as well as hearts in situ, devoid of hormonal and neural input, indicate that strong over-expression of TrpA1 in larvae at 30 or 37 °C stopped the heart from beating, but in a diastolic state. Cardiac function recovered upon cooling after short exposure to high temperature. Parental control larvae (UAS-TrpA1) increased heart rate transiently at 30 and 37 °C but slowed at 37 °C within 3 min for in-situ preparations, while in-vivo larvae maintained a constant heart rate. The in-situ preparations maintained an elevated rate at 30 °C. The heartbeat in the TrpA1-expressing strains could not be revived at 37 °C with serotonin. Thus, TrpA1 activation may have allowed enough Ca2+ influx to activate K(Ca) channels into a form of diastolic stasis. TrpA1 activation in body wall muscle confirmed a depolarization of membrane. In contrast, blowfly Phaenicia sericata larvae increased heartbeat at 30 and 37 °C, demonstrating greater cardiac thermotolerance

    Old and New Stories: Revelations from Functional Analysis of the Bovine Mammary Transcriptome during the Lactation Cycle

    Get PDF
    The cow mammary transcriptome was explored at −30, −15, 1, 15, 30, 60, 120, 240, and 300 d relative to parturition. A total of 6,382 differentially expressed genes (DEG) at a false discovery rate ≤0.001 were found throughout lactation. The greatest number of DEG (>3,500 DEG) was observed at 60 and 120 d vs. −30 d with the largest change between consecutive time points observed at −15 vs. 1 d and 120 vs. 240 d. Functional analysis of microarray data was performed using the Dynamic Impact Approach (DIA). The DIA analysis of KEGG pathways uncovered as the most impacted and induced ‘Galactose metabolism’, ‘Glycosylphosphatidylinositol (GPI)-anchor biosynthesis’, and ‘PPAR signaling’; whereas, ‘Antigen processing and presentation’ was among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism during lactation, particularly synthesis of carbohydrates and lipid. A marked degree of utilization of amino acids as energy source, an increase of protein export, and a decrease of the protein synthesis machinery as well cell cycle also were suggested by the DIA analysis. The DIA analysis of Gene Ontology and other databases uncovered an induction of Golgi apparatus and angiogenesis, and the inhibition of both immune cell activity/migration and chromosome modifications during lactation. All of the highly-impacted and activated functions during lactation were evidently activated at the onset of lactation and inhibited when milk production declined. The overall analysis indicated that the bovine mammary gland relies heavily on a coordinated transcriptional regulation to begin and end lactation. The functional analysis using DIA underscored the importance of genes associated with lactose synthesis, lipid metabolism, protein synthesis, Golgi, transport, cell cycle/death, epigenetic regulation, angiogenesis, and immune function during lactation

    Among psychedelic-experienced users, only past use of psilocybin reliably predicts nature relatedness

    Full text link
    Background: Past research reports a positive relationship between experience with classic serotonergic psychedelics and nature relatedness (NR). However, these studies typically do not distinguish between different psychedelic compounds, which have a unique psychopharmacology and may be used in specific contexts and with different intentions. Likewise, it is not clear whether these findings can be attributed to substance use per se or unrelated variables that differentiate psychedelic users from nonusers. Aims: The present study was designed to determine the relative degree to which lifetime experience with different psychedelic substances is predictive of self-reported NR among psychedelic-experienced users. Methods: We conducted a combined reanalysis of five independent datasets ( N = 3817). Using standard and regularized regression analyses, we tested the relationship between degree of experience with various psychedelic substances (binary and continuous) and NR, both within a subsample of psychedelic-experienced participants as well as the complete sample including psychedelic-naïve participants. Results/Outcomes: Among people experienced with psychedelics, only past use of psilocybin (versus LSD, mescaline, Salvia divinorum, ketamine, and ibogaine) was a reliable predictor of NR and its subdimensions. Weaker, less reliable results were obtained for the pharmacologically similar N,N-dimethyltryptamine (DMT). Results replicate when including psychedelic-naïve participants. In addition, among people exclusively experience with psilocybin, use frequency positively predicted NR. Conclusions/Interpretation: Results suggest that experience with psilocybin is the only reliable (and strongest) predictor of NR. Future research should focus on psilocybin when investigating effects of psychedelic on NR and determine whether pharmacological attributes or differences in user expectations/use settings are responsible for this observation

    Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD

    Get PDF
    Understanding the underlying mechanisms of the human brain in health and disease will require models with necessary and sufficient details to explain how function emerges from the underlying anatomy and is shaped by neuromodulation. Here, we provide such a detailed causal explanation using a whole-brain model integrating multimodal imaging in healthy human participants undergoing manipulation of the serotonin system. Specifically, we combined anatomical data from diffusion magnetic resonance imaging (dMRI) and functional magnetic resonance imaging (fMRI) with neurotransmitter data obtained with positron emission tomography (PET) of the detailed serotonin 2A receptor (5-HT2AR) density map. This allowed us to model the resting state (with and without concurrent music listening) and mechanistically explain the functional effects of 5-HT2AR stimulation with lysergic acid diethylamide (LSD) on healthy participants. The whole-brain model used a dynamical mean-field quantitative description of populations of excitatory and inhibitory neurons as well as the associated synaptic dynamics, where the neuronal gain function of the model is modulated by the 5-HT2AR density. The model identified the causative mechanisms for the non-linear interactions between the neuronal and neurotransmitter system, which are uniquely linked to (1) the underlying anatomical connectivity, (2) the modulation by the specific brainwide distribution of neurotransmitter receptor density, and (3) the non-linear interactions between the two. Taking neuromodulatory activity into account when modeling global brain dynamics will lead to novel insights into human brain function in health and disease and opens exciting possibilities for drug discovery and design in neuropsychiatric disorders.ERC Advanced Grant DYSTRUCTURE (295129), the Spanish Research ProjectPSI2016-75688-P, and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2). ERC Consolidator Grant: CAREGIVING (615539) and Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117). Alex Mosley Charitable Trust, and the study that yielded the empirical LSD data was carried out as part of a Beckley-Imperial research collaboration. J. Cabral is supported under the project NORTE-01-0145-FEDER-000023 from the Northern Portugal Regional Operational Program (NORTE 2020) under the Portugal 2020 Partnership Agreement through the European Regional Development Fund (FEDER). Cimbi database were supported by a centre grant from the Lundbeck Foundation (2010-5364

    Brain dynamics predictive of response to psilocybin for treatment-resistant depression

    Get PDF
    Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression—to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin

    An inverse method to interpret colour-magnitude diagrams

    Get PDF
    An inverse method is developed to determine the star formation history, the age-metallicity relation, and the IMF slope from a colour-magnitude diagram. The method is applied to the Hipparcos HR diagram. We found that the thin disk of our Galaxy shows a peak of stellar formation 1.6 Gyr ago. The stars close to the Sun have a solar metallicity and a mean IMF index equal to 3.2. However, the model and the evolutionary tracks do not correctly reproduce the horizontal giant branch.Comment: 14 pages, 11 figures. To be published in Astronomy & Astrophysic

    A low surface brightness halo surrounding the globular cluster NGC 5694

    Full text link
    We report on the discovery of an extended stellar halo surrounding the distant Galactic globular cluster NGC 5694, based on new deep (V ~ 24.5) wide-field (24' * 20') photometry acquired with VIMOS at VLT. Stars with colour and magnitude consistent with the Main Sequence of the cluster are clearly identified out to r ~ 9'(~ 93 pc) from the cluster center, much beyond the tidal radius of the King model that best fits the inner profile (r_t=3.15'). We do not find a clear end of the structure within our field. The overall observed profile cannot be properly fitted with either a King (1966) model, an Elson et al. (1987) model, or a Wilson (1975) model; however it is very smooth and does not show any sign of the break near the tidal radius that is typically observed in stellar systems with tidal tails. The density map we derived does not show evidence of tidal tails, within the considered field. The extra-tidal component contains ~ 3.5% of the cluster light (mass) and has a surface density profile falling as ~ r^{-3.2}. The possible origin of the detected structure is discussed, as a clear-cut conclusion cannot be reached with the available data.Comment: 7 pages, 4 figures, accepted for publication in MNRA
    • …
    corecore