3,117 research outputs found

    Virtual knot groups and almost classical knots

    Full text link
    We define a group-valued invariant of virtual knots and relate it to various other group-valued invariants of virtual knots, including the extended group of Silver-Williams and the quandle group of Manturov and Bardakov-Bellingeri. A virtual knot is called almost classical if it admits a diagram with an Alexander numbering, and in that case we show that the group factors as a free product of the usual knot group and Z. We establish a similar formula for mod p almost classical knots, and we use these results to derive obstructions to a virtual knot K being mod p almost classical. Viewed as knots in thickened surfaces, almost classical knots correspond to those that are homologically trivial. We show they admit Seifert surfaces and relate their Alexander invariants to the homology of the associated infinite cyclic cover. We prove the first Alexander ideal is principal, recovering a result first proved by Nakamura et al. using different methods. The resulting Alexander polynomial is shown to satisfy a skein relation, and its degree gives a lower bound for the Seifert genus. We tabulate almost classical knots up to 6 crossings and determine their Alexander polynomials and virtual genus.Comment: 44 page

    Hydrothermal Base Catalyzed Depolymerization and Conversion of Technical Lignin – An Introductory Review

    Get PDF
    Lignin represents the most significant potential source of sustainable aromatic compounds. Currently, the vast majority of technical lignin could be sourced from industrial paper production and in particular the Kraft process, where it is conventionally combusted for chemicals recovery and heat generation (e.g. for plant operation). While in recent years several efforts have concerned the conversion of native lignin (i.e. as found in nature) during biomass processing, there has also been significant focus on the “Base Catalyzed” conversion of technical lignin. This process is of significant interest, since it could be potentially integrated into existing Kraft mill infrastructure. The following review paper focuses on the development of the hydrothermal base catalyzed depolymerization (HBCD) of lignin, as a basis to produce valuable chemical compounds. Focus will be placed on NaOH catalyzed reactions in the aqueous phase, as this approach is considered the most promising. Focus is placed on reaction conditions and characterization of monomeric aromatic compounds from the HBCD approach. Oligomers, as largest product fraction, is also considered, however, these are seldom analyzed in detail in the literature and ideas on further use are scarce. The review also addresses findings in literature concerning the assessment of the solid, liquid, and gas product streams arising from HBCD. From this paper, process conditions for HBCD reactions can be derived and it is shown that the solid phase has a high potential for further valorization and downstream processing

    Accurate collection of reasons for treatment discontinuation to better define estimands in clinical trials

    Full text link
    Background: Reasons for treatment discontinuation are important not only to understand the benefit and risk profile of experimental treatments, but also to help choose appropriate strategies to handle intercurrent events in defining estimands. The current case report form (CRF) commonly in use mixes the underlying reasons for treatment discontinuation and who makes the decision for treatment discontinuation, often resulting in an inaccurate collection of reasons for treatment discontinuation. Methods and results: We systematically reviewed and analyzed treatment discontinuation data from nine phase 2 and phase 3 studies for insulin peglispro. A total of 857 participants with treatment discontinuation were included in the analysis. Our review suggested that, due to the vague multiple-choice options for treatment discontinuation present in the CRF, different reasons were sometimes recorded for the same underlying reason for treatment discontinuation. Based on our review and analysis, we suggest an intermediate solution and a more systematic way to improve the current CRF for treatment discontinuations. Conclusion: This research provides insight and directions on how to optimize the CRF for recording treatment discontinuation. Further work needs to be done to build the learning into Clinical Data Interchange Standards Consortium standards.Comment: 13 pages, 3 figures, 1 tabl

    Oligodendroglial Argonaute protein Ago2 associates with molecules of the Mbp mRNA localization machinery and is a downstream target of Fyn kinase

    Get PDF
    Oligodendrocytes myelinate neuronal axons in the central nervous system (CNS) facilitating rapid transmission of action potentials by saltatory conduction. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination in the CNS of rodents. Mbp mRNA is not translated immediately after exit from the nucleus in the cytoplasm, but is transported to the plasma membrane in RNA transport granules in a translationally silenced state. We have previously identified the small non-coding RNA 715 (sncRNA715) as an inhibitor of Mbp translation associated with RNA granules. Argonaute (Ago) proteins and small RNAs form the minimal core of the RNA induced silencing complex and together recognize target mRNAs to be translationally inhibited or degraded. Recently, tyrosine phosphorylation of Ago2 was reported to be a regulator of small RNA binding. The oligodendroglial non-receptor tyrosine kinase Fyn is activated by neuronal signals and stimulates the translation of Mbp mRNA at the axon-glial contact site. Here we analyzed the expression of Ago proteins in oligodendrocytes, if they associate with Mbp mRNA transport granules and are tyrosine phosphorylated by Fyn. We show that all Ago proteins (Ago1-4) are expressed by oligodendrocytes and that Ago2 colocalizes with hnRNP A2 in granular cytoplasmic structures. Ago2 associates with hnRNP A2, Mbp mRNA, sncRNA715 and Fyn kinase and is tyrosine phosphorylated in response to Fyn activity. Our findings suggest an involvement of Ago2 in the translational regulation of Mbp. The identification of Ago proteins as Fyn targets will foster further research to understand in more molecular detail how Fyn activity regulates Mbp translation

    Hydrothermal base catalysed treatment of Kraft lignin - time dependent analysis and a techno-economic evaluation for carbon fibre applications

    Get PDF
    The hydrothermal base-catalysed treatment of industrial Kraft lignin (KL) is investigated as a basis for production of a sustainable carbon fibre precursor, with a focus on the time-dependent evolution and impact on precursor properties. Hydrothermal treatment was performed at T = 300 °C and p = 180 bar, with the retention time (tret) varied between 8, 12, 16, 20, and 24 mins. Molecular weight distribution and thermal stability of the processed lignin were close to maximum after 8 min, and 12–16 min respectively. Chemical modification was found to continue (e.g. demethoxylation) over the entire tret range (24 min). Analysis of the recovered oily phase indicated catechol derivatives were stable end-products with, e.g., vanillin and guaiacol as intermediates. A techno-economic analysis indicated a price of ca. 1600 €/t at a production capacity of 10 kt/a is achievable, with main cost-drivers being lignin (60%), fixed costs (20%), and energy (10%)

    Renewable Microalgae-derived Nitrogen Doped Hydrothermal Carbons

    Get PDF
    Nitrogen-doped carbon materials are synthesized via an effective, sustainable, and green one-step route based on the hydrothermal carbonization of microalgae with high nitrogen content (ca. 11 wt %). The addition of the monosaccharide glucose to the reaction mixture is found to be advantageous, enhancing the fixation of nitrogen in the synthesized carbons, resulting in materials possessing nitrogen content in excess of 7 wt %, and leading to promising reaction yields. Increasing the amount of glucose leads to a higher nitrogen retention in the carbons, which suggests co-condensation of the microalgae and glucose-derived degradation/hydrolysis products via Maillard-type cascade reactions, yielding nitrogen-containing aromatic heterocycles (e.g., pyrroles) as confirmed by several analytical techniques. Increasing the HTC processing temperature leads to a further aromatization of the chemical structure of the HTC carbon and the formation of increasingly more condensed nitrogen-containing functional motifs (i.e., pyridinic and quaternary nitrogen).Peer reviewe

    Common species contribute little to spatial patterns of functional diversity across scales in coastal grasslands

    Get PDF
    Funder: Rural and Environment Science and Analytical Services Division; Id: http://dx.doi.org/10.13039/100011310Funder: Scottish Government; Id: http://dx.doi.org/10.13039/100012095Abstract: Spatial patterns of functional diversity are important in understanding community assembly as well as spatial variation in ecosystem functioning, yet the contribution of different species to these patterns remains unclear, making it difficult to generalise. Several studies have previously used a sequential addition approach to determine the subsets of species that contribute to the spatial distribution of species richness, frequently showing the importance of common species to richness patterns. This approach, however, has not been applied to functional diversity despite the central role of species traits in community ecology. Here we use a multiscale survey of plants from the Machair grassland system of the Western Isles of Scotland to ask the following questions: (i) Do functional diversity patterns correlate better with geographically common or geographically rare species?; (ii) Do their relative contributions vary with spatial scale?; and (iii) Do these patterns vary between functional diversity measures? We show that while species richness patterns correlate with geographically common species, common species contribute less than expected to spatial patterns of functional diversity at frequently used spatial monitoring scales. The relative contribution of species to overall biodiversity patterns, however, can vary with spatial scale. Synthesis. Surveying only common species may be inadequate for estimating spatial patterns of functional diversity, especially if using occurrence as opposed to percentage cover or abundance data, and spatial scale needs to be considered when designing surveys. Our approach highlights the species that may be adequate indicators of different dimensions of biodiversity and contributes to our understanding of the distribution of functional diversity in space

    Ichthyophonus irregularis sp. nov. from the yellowtail flounder Limanda ferruginea from the Nova Scotia shelf

    Get PDF
    A previously described unusual form of the protistan parasite Ichthyophonus, differing in morphological and developmental features from I. hoferi sensu Plehn & Mulsow, was recovered from yellowtail flounder Limanda ferruginea Storer from the Brown's Bank area of the Nova Scotia shelf. The nuclear gene encoding the rRNA of the small ribosomal subunit was amplified from this unusual form of Ichthyophonus using the polymerase chain reaction, sequenced and aligned with other eukaryote small subunit (ssu)-rDNAs. Inferred phylogenetic trees clearly show that its ssu-rDNA is distinct from those of 2 isolates of I. hoferi sensu Plehn & Mulsow from different hosts and geographical locations (herring in the North Sea, and yellowtail flounder from the Nova Scotia shelf). We consider the unusual form to be a separate species, I. irregularis. The occurrence of a second, distinct type of Ichthyophonus within a single host species raises the possibility that ichthyophoniasis could be produced by different (although related) pathogens, and in some cases, by concurrent infections of the two
    corecore