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Abstract
1. Spatial patterns of functional diversity are important in understanding community 

assembly as well as spatial variation in ecosystem functioning, yet the contribu-
tion of different species to these patterns remains unclear, making it difficult to 
generalise. Several studies have previously used a sequential addition approach to 
determine the subsets of species that contribute to the spatial distribution of spe-
cies richness, frequently showing the importance of common species to richness 
patterns. This approach, however, has not been applied to functional diversity 
despite the central role of species traits in community ecology.

2. Here we use a multiscale survey of plants from the Machair grassland system of 
the Western Isles of Scotland to ask the following questions: (i) Do functional di-
versity patterns correlate better with geographically common or geographically 
rare species?; (ii) Do their relative contributions vary with spatial scale?; and (iii) 
Do these patterns vary between functional diversity measures?

3. We show that while species richness patterns correlate with geographically 
common species, common species contribute less than expected to spatial pat-
terns of functional diversity at frequently used spatial monitoring scales. The 
relative contribution of species to overall biodiversity patterns, however, can 
vary with spatial scale.

4. Synthesis. Surveying only common species may be inadequate for estimating 
spatial patterns of functional diversity, especially if using occurrence as opposed 
to percentage cover or abundance data, and spatial scale needs to be considered 
when designing surveys. Our approach highlights the species that may be ad-
equate indicators of different dimensions of biodiversity and contributes to our 
understanding of the distribution of functional diversity in space.

K E Y W O R D S
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1  |  INTRODUC TION

The spatial distribution of biodiversity components such as func-
tional diversity is of great interest to ecologists as it reflects 

community assembly as well as the variation in ecosystem func-
tioning in space. However, we are still uncertain how the distribu-
tion patterns of individual species contribute to overall biodiversity 
patterns, particularly functional diversity. Functional diversity 
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is an important component of biodiversity that captures the ex-
tent of ecological trait differences within a community (de Bello 
et al., 2021) and determines both the response of communities to 
their environment and the effect of the community on ecosystem 
functioning (Lavorel & Garnier, 2002; Violle et al., 2007). Like tax-
onomic and phylogenetic dimensions of biodiversity, functional di-
versity varies in space. For plants, environmental factors including 
climate (Ordonez & Svenning, 2016; Wieczynski et al., 2019) and 
grazing (Carmona et al., 2012; Fischer et al., 2019) contribute to 
spatial variation in functional diversity; however, the contribution 
of individual species, and their attributes, to this spatial variation 
is yet to be determined.

The geographical rarity of species influences the observed 
spatial arrangement of biodiversity, yet there is no general con-
sensus on whether common or rare species are more important 
for determining observed spatial biodiversity patterns. A handful 
of studies have investigated the contribution of common and rare 
species to spatial patterns of species richness, showing differ-
ential contributions of these species to spatial patterning, often 
with the richness of common species showing a higher correla-
tion with overall species richness patterns (Lennon et al., 2004, 
2011; Reddin et al., 2015; van Proosdij et al., 2016). However, 
whether the importance of common and rare species differs in the 
spatial patterning of other important biodiversity components, 
such as functional diversity, has not yet been investigated to our 
knowledge.

Lennon et al. (2004) developed a method to determine the con-
tribution of geographically rare (narrow ranged) and geographically 
common (widespread) species to spatial patterns of species richness 
by ranking species by their geographic rarity and calculating the 
correlation between spatial patterns of species richness of different 
subassemblages compared to full assemblages. This methodology 
has been applied across multiple taxonomic groups in different geo-
graphic regions, frequently showing that common species contribute 
more than rare species to species richness patterns (e.g. Bregović 
et al., 2019; Pearman & Weber, 2007; van Schalkwyk et al., 2019; 
Vazquez & Gaston, 2004). This pattern can change, however, de-
pending on whether correlations are plotted against the size of the 
subassemblage, that is its richness, or the amount of information 
the subassemblage holds, that is the sum of the binomial variances 
within the subassemblage (Reddin et al., 2015). By ranking species 
according to geographic rarity and applying methods to determine 
the contribution of rare and common species to functional diversity, 
we investigate how patterns and processes inferred for species rich-
ness translate to additional biodiversity components.

Although rare species have often been shown to contribute 
disproportionately to functional diversity (Jain et al., 2014; Leitão 
et al., 2016), these analyses do not incorporate the spatial distri-
bution of diversity. By incorporating space into analyses of rarity 
and functional diversity, not only in terms of geographic rarity, but 
also spatial variation in biodiversity, we can determine the types of 
species that may be useful indicators of different biodiversity com-
ponents including functional diversity. The analysis of how rarity 

contributes to the spatial distribution of functional diversity will 
facilitate targeted surveying and trait data collection as well as con-
tribute to our understanding of the distribution of functional diver-
sity in space and the functional importance of rare species.

The contribution of common and rare species to spatial patterns 
of species richness depends on two properties of species distribu-
tions: the species- occupancy distribution and the species richness 
distribution (Heegaard et al., 2013). If geographically rare species are 
evenly distributed across the species richness gradient, then overall 
species richness will be correlated with common species, whereas 
if rare species only occur in the richest sites, then they will show a 
correlation with overall species richness. The same may hold true for 
functional diversity, and the contributions of individual species to 
spatial patterns of functional diversity may depend on the relative 
proportion of common and rare species in areas with low functional 
diversity.

Unless species show true fractality in their distribution, the con-
tribution of geographically rare and common species to spatial bio-
diversity patterns is likely to be scale dependent. However, as the 
size of the lens we look through (or sample area) increases, we are 
likely to sample more species, following the species– area relation-
ship. Therefore, the area of occupancy of rare species may increase 
with the spatial scale investigated and appear more common, thus 
influencing the size of the contribution made by rare and common 
species as we increase the sampling unit size.

To investigate the contribution of rare and common species to 
spatial patterns of functional diversity, we use a multiscale survey of 
plants from Machair grassland on the Western Isles of Scotland. The 
Machair system is a globally threatened habitat that is only found on 
the western coasts of Scotland and Ireland. Machair is an ecologically 
important, partially managed grassland with a high floristic diversity 
resulting from livestock grazing and some areas receiving rotational 
management of low intensity cropping (Angus & Dargie, 2002). The 
combination of low intensity, rotational agricultural management and 
fertilisation with kelp, alongside exposure to Atlantic storms, results 
in substantial spatio- temporal turnover of communities in terms of 
both their species and traits (White et al., 2018). The high diversity of 
the system and spatial heterogeneity provide a unique opportunity to 
assess macroecological patterns of biodiversity at a local scale with a 
unique dataset of plant percentage cover in nested quadrats at three 
spatial scales: 0.04 m × 0.04 m; 0.2 m × 0.2 m; and 1 m × 1 m.

In this study, we extend the method developed by Lennon 
et al. (2004) and apply it to the Machair system to investigate the 
contribution of geographically common and rare species to spatial 
patterns of species richness and two measures of functional diver-
sity. These measures are functional dispersion (FDis; Laliberté & 
Legendre, 2010) and Petchey and Gaston’s dendrogram- based mea-
sure of functional diversity (PGFD; Petchey & Gaston, 2002). We 
analyse diversity patterns across four sampling scales to see how 
the contribution of common and rare species to spatial diversity pat-
terns varies with spatial scale.

We determine the contribution of commonness and rarity to 
spatial diversity patterns and investigate the species and community 
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characteristics that may underlie differing contributions. We do 
this by (i) calculating the sequential correlations of the diversity of 
subassemblages of species to overall spatial diversity patterns; (ii) 
determining whether the 25% most common and most rare species 
differ in their functional diversity from what we would expect from 
random; and (iii) modelling how community diversity is related to the 
proportion of the community consisting of the 25% most common 
or most rare species.

2  |  MATERIAL S AND METHODS

2.1  |  Overview

We describe the data collection in the Machair grassland of the 
Western Isles of Scotland and the ranking of commonness and rarity 
using the area of occupancy. We calculate the species richness and 
functional diversity of subassemblages of species and correlate this 
with the diversity of the full assemblage to determine which set of 
species better match overall spatial patterns of diversity. To inves-
tigate the components of species and trait distributions that lead 
to different contributions of common and rare species, we calculate 
the functional diversity of the 25% most common and most rare spe-
cies, and determine how the proportion of species within a com-
munity that consists of these species influences observed species 
richness and functional diversity.

2.2  |  Data

Plant percentage cover data were obtained from 19 Machair grass-
land sites across the Western Isles of Scotland collected in 2008 
(see White et al., 2018). Each site was sampled at three nested 
quadrat scales: 0.04 m × 0.04 m; 0.2 m × 0.2 m; and 1 m × 1 m. 
Each of these quadrat scales was part of a 5 × 5 grid so that at each 
of the 19 sites, 25 quadrats were sampled at each of the three 
scales. This gives a total of 475 quadrats sampled per spatial scale, 
which we now refer to as plots. Plots of 1 m × 1 m were also ag-
gregated at each site to give a total of 19 plots at the 5 m × 5 m 
scale. The spatial sampling design is shown in Figure S1. There 
were 58 species in total at the 0.04 m × 0.04 m sampling scale, 86 
at the 0.2 m × 0.2 m sampling scale and 115 at the 1 m × 1 m and 
5 m × 5 m sampling scales.

2.3  |  Diversity calculations

The traits used to calculate functional diversity were canopy height, 
seed mass, SLA, leaf size (one- sided area of leaf), pollen vector (in-
sect, selfing or wind) and mode of reproduction (seed or vegeta-
tive). These data were obtained from BiolFlor (Klotz et al., 2002) and 
LEDA (Kleyer et al., 2008) trait databases. These traits were chosen 
as they have good coverage for the species present and reflect key 

vegetative traits including the leaf- height- seed trait dimensions of 
Westoby (1998), leaf size, which is well- correlated with disturbance 
(Pakeman, 2011), and two reproductive traits that are related to 
other trophic levels (pollen vector) or to primary means of regenera-
tion (mode of reproduction).

We calculated two measures of functional diversity of plant 
communities, namely PGFD and FDis. Functional dispersion cap-
tures the dispersion of species in trait space, that is are they clus-
tered together or functionally very different, and can be calculated 
using either occurrence or abundance data. We use both occurrence 
(presence– absence) and percentage cover data to calculate two ver-
sions of the measure to investigate how the contribution of species 
depends on whether occurrence or abundance- weighted measures 
of functional diversity are used. Petchey and Gaston’s measure, on 
the other hand, uses occurrence data and reflects the functional 
richness of species within a community through their functional 
similarity. Rao’s quadratic entropy (RaoQ) and abundance- weighted 
RaoQ were also calculated. However, as FDis and RaoQ are inher-
ently linked as they both estimate species dispersion in trait space 
(Laliberté & Legendre, 2010), we only present the results for FDis 
and abundance- weighted FDis in the main text. Additional results 
for RaoQ can be found in the Supporting Information and broadly 
match those of FDis (see Figures S2 and S3). We also calculated spe-
cies richness.

PGFD calculates the total minimum branch length of a func-
tional tree linking the species within a community (Petchey & 
Gaston, 2002, 2006). It is a multidimensional measure of func-
tional richness (Schleuter et al., 2010) where higher values indicate 
greater complementarity of trait values, that is greater differences 
between species in terms of their traits (Petchey & Gaston, 2002). 
Firstly, we used Gower distances to create a distance matrix 
from the species- by- trait matrix. Gower distances allowed us to 
use both categorical and continuous traits and weight categori-
cal traits according to the number of levels that trait has. For ex-
ample, pollen vector (which has three levels) was given the same 
overall weight as the mode of reproduction (two levels) so that 
these two traits contribute equally to the calculation of functional 
diversity. Secondly, species pairwise functional distances were 
clustered using the group average method (UPGMA) as suggested 
by Podani and Schmera (2006), which has been shown to outper-
form other clustering methods (Clark et al., 2012) to produce a 
functional tree. PGFD was calculated using the treedive function 
in the r package ‘vegan’ (Oksanen et al., 2019).

FDis measures the dispersion of species in functional trait space 
by measuring the average distance of each species to the centroid 
of the community, which can be weighted by species abundances 
(Laliberté & Legendre, 2010). Lower values of FDis, therefore, 
represent clustering of species in trait space, that is the species 
are functionally similar in terms of their traits. Unlike PGFD, FDis 
is not inflated by species richness and can, in fact, decrease with 
higher numbers of species if the additional species are function-
ally similar to other species present in the community (Laliberté & 
Legendre, 2010).
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FDis was calculated using the dbFD function in the r package ‘fd’ 
(Laliberté et al., 2014; Laliberté & Legendre, 2010) using both oc-
currence data and percentage cover. As with PGFD, we used Gower 
distances to calculate the functional dissimilarity of species. The dis-
tance matrix was then analysed using the principal coordinate anal-
yses and the resulting axes used as traits. The species- by- species 
distance matrix could not be represented in Euclidean space and so 
a square root correction was used.

2.4  |  Contribution of common and rare species to 
diversity metrics

We ranked the species according to their geographic rarity from 
common to rare, and rare to common at each spatial scale based 
on the number of plots at that scale that they appeared in. This 
represents the area of occupancy of each species. Equally ranked 
species were added in a random order. From these rankings, we 
generated a series of species richness and functional diversity 
patterns for subsets of the communities within each plot with in-
creasing numbers of species (which we call subassemblages). The 
diversity measures of each of these subassemblages were cor-
related with the diversity measures of the full assemblage using 
Pearson’s correlations.

To determine if these correlations using ranked subassemblages 
differed from what we might expect from random subassemblages, 
we took two randomisation approaches: one for species richness 
and one for the functional diversity measures. For species richness, 
we randomly added the species into the subassemblages 1000 
times, maintaining the distribution of each species. For the func-
tional diversity measures, we used a constrained randomisation ap-
proach— a random assembly model— where the species names were 
randomised in the species- by- trait matrix 500 times using the inde-
pendent swap algorithm (Gotelli & Entsminger, 2003). Species were 
then added into the subassemblages in order from common to rare, 
and rare to common, and the functional diversity of each subassem-
blage calculated using the randomised species- by- trait matrix (i.e. 
500 randomisations for each of the subassemblages in order from 
common to rare, and again from rare to common). This ensured that 
only the species traits of a species were randomised, while species 
richness and any trait covariances were constrained. Both randomi-
sation approaches constrained the spatial autocorrelation of species 
occurrences (i.e. where species are present was not altered), which 
is important given the spatial structure of the data arising from the 
nested sampling protocol.

Unless they are ubiquitously present or absent, common and rare 
species, by their definition, hold different amounts of information if 
their range occupancy distribution is right- skewed, that is, a certain 
number of common species will hold more information than the same 
number of rare species if the common species' occupancy is closer to 
50% than the rare species (Heegaard et al., 2013; Lennon et al., 2004). 
Therefore, emergent patterns between Pearson correlations and sub-
assemblage richness (the number of species in the subassemblage) 

may purely be a result of a statistical artefact. Using the cumulative 
information of species, rather than subassemblage richness, puts com-
mon and rare species on equal footing (Lennon et al., 2004; Reddin 
et al., 2015). We calculated the cumulative information content of each 
subassemblage as the sum of the binomial variance of each species 
presence– absence within the subassemblage p(1 − p), where p is the 
proportion of sites occupied by a species.

We plotted the Pearson correlation of the subassemblage with 
the full assemblage for each diversity metric against the cumulative 
information content for common- to- rare, and rare- to- common rank-
ings. We used these to compare the contributions of common and 
rare species to spatial patterns of each of the diversity metrics so that 
if the common- to- rare curve increases at a higher rate than the rare- 
to- common curve, this shows that common species contribute more 
to the spatial pattern of diversity than rare species and vice versa.

2.5  |  Functional diversity of most common and 
rare species

To determine whether common and rare species were more or less 
diverse in terms of their traits than expected, we identified the 25% 
most geographically common and geographically rare species at 
each spatial scale. We calculated FDis and PGFD of these species 
and compared this to the null distribution of FDis and PGFD of these 
species generated from 999 randomisations of species names in the 
species- by- trait matrix of all the species recorded in the surveys fol-
lowing the same independent swap algorithm as above. We calcu-
lated the p- values for the observed FDis and PGFD of the 25% most 
common and most rare species within the null probability distribu-
tion at each spatial scale to determine whether they were more or 
less diverse than we would expect from random using a two- tailed 
test, that is whether they fall outside the 2.5th percentiles of the 
distribution of values from the randomisations. We additionally 
tested this using the 33% most common and most rare species to 
see whether the result varied with the threshold set.

2.6  |  Community composition on diversity

To test the suggestion of Heegaard et al. (2013) that the contri-
bution of commonness and rarity to spatial diversity patterns 
depends on the distribution of rare species relative to the most 
diverse plots, we modelled diversity as a function of the propor-
tion of the community comprising of the most common and most 
rare species. We calculated the proportion of the community 
in each plot that the 25% most common and most rare species 
made up. We then modelled log species richness, PGFD, FDis and 
abundance- weighted FDis using a Bayesian approach, with the 
predictor first being the proportion of the community made up of 
common species, and secondly the proportion of the community 
made up of rare species. These were included in separate models 
as by their calculation they are inherently linked and, therefore, 
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colinear. At the three smaller spatial scales, we used conditional 
autoregressive models which account for spatial autocorrelation 
within their error structure with the function S.CARleroux from the 
r package ‘CARBayes’ (Lee, 2013). We used a distance matrix to 
identify all plots within the 5 × 5 sampling grid at each site (i.e. 
all plots at a particular spatial scale, at an individual site) to de-
fine the neighbourhood for the spatial weights. We set Rho to 1 
for intrinsic conditional autoregressive models. Spatial priors were 
given a gamma distribution with shape 0.5 and scale 0.0005. At 
the 5 m × 5 m spatial scale, we assumed no spatial autocorrelation 
as there was only one 5 m × 5 m plot sampled at each site. We 
used the MCMCglmm function from the r package ‘MCMCglmm’ 
(Hadfield, 2010) for GLMs at this scale. All models were carried 
out with uninformative priors and a Gaussian distribution. The 
chains were run for 50,000 iterations with a burn- in of 10,000. 
Convergence of all models was confirmed through visual inspec-
tion of the trace plots and the Geweke diagnostic.

3  |  RESULTS

3.1  |  Rarity distributions of Machair species

Area of occupancy and maximum percentage cover of species 
were similarly correlated across spatial scales with Pearson’s cor-
relation coefficients ranging from 0.44 at 5 m × 5 m to 0.52 at 

0.20 m × 0.20 m (Figure S4). The frequency distributions of area 
of occupancy and mean percentage cover of species were both 
strongly right- skewed (Figure S5), that is there are more rare species 
than common ones. The percentage of species found only within a 
single plot (i.e. the most geographically rare) varied with the spatial 
scale of sampling: 17.2% at 0.04 m × 0.04 m; 11.6% at 0.2 m × 0.2 m; 
12.2% at 1 m × 1 m; and 33.0% at 5 m × 5 m.

3.2  |  Contribution of common and rare species 
to diversity

Across all biodiversity measures, the difference in contribution be-
tween common and rare species to overall spatial patterns appeared 
lowest at the 0.04 m × 0.04 m spatial scale, as at this scale the two 
curves increased at similar rates.

For species richness, the common- to- rare curve consistently 
fell within the 95% confidence intervals generated from the ran-
domisations, that is the Pearson correlation between species rich-
ness calculated using the subassemblage and the full assemblage 
did not differ from what you would expect from random for any 
level of cumulative information (Figure 1). At the 0.2 m × 0.2 m 
scale and 1 m × 1 m scale, although common species appeared 
to contribute more to spatial patterns of species richness when 
added first (left end of yellow lines in Figure 1), when added to 
subassemblages already containing rare species, the observed 

F I G U R E  1  Sequential Pearson correlation coefficients between subassemblages and the full assemblage species richness at (a) 
0.04 m × 0.04 m, (b) 0.2 m × 0.2 m, (c) 1 m × 1 m and (d) 5 m × 5 m. Species were added sequentially by rank from geographically rarest to 
geographically most common (dark blue line) and geographically most common to geographically rarest (yellow line). Blue- grey lines show 
1000 randomisations with species added into subassemblages randomly and dashed lines indicate the 95% confidence intervals generated 
from the randomisations. Correlations are plotted against the cumulative information of the subassemblage calculated as the cumulative sum 
of the binomial variance of species within the subassemblage, Σpi(1 − pi), where pi is the proportion of the study plots occupied by species, i. 
Rug plots indicate the distribution of data points for each curve
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spatial pattern was less correlated than random (right end of blue 
line in Figure 1).

For the two measures of functional diversity that used occur-
rence data (FDis and PGFD), rare species gave closer approximations 
of spatial patterns of functional diversity than common species, par-
ticularly at the 1 m × 1 m scale. Common species at the 0.2 m × 0.2 m 
and 1 m × 1 m scales for these two measures contributed to spa-
tial patterns substantially less than expected from random as their 
correlation curves increased at a much slower rate (Figures 2 and 
3). The curve fell below the 95% confidence interval for the subas-
semblages up to and including the 22 most common species at the 
0.2 m × 0.2 m scale for PGFD and FDis, the 29 most common species 
for PGFD at the 1 m × 1 m spatial scale and 30 most common species 
for FDis at the 1 m × 1 m spatial scale. When FDis was weighted by 
the percentage cover of species, the difference between the curves 
decreased and at the larger two spatial scales the common- to- rare 
curve lay above the rare- to- common curve indicating higher correla-
tions with overall abundance- weighted FDis (Figure 4).

Generally, the 25% most common species fell to the left of the 
null distribution of functional diversity indicating that they were 
less functionally diverse than expected from random (negative stan-
dardised effect sizes), and the 25% rarest species fell to the right 
indicating they were more functionally diverse than expected from 
random (positive standardised effect sizes; Table 1). A two- tailed 
significance test showed this was only significant at the 5% level for 
PGFD at the 1 m × 1 m spatial scale. Conversely, the 25% rarest 

species were less functionally dispersed in trait space than you 
would expect from random at the 0.04 m × 0.04 m scale. We addi-
tionally tested the functional diversity of the 33% most common and 
most rare species and found similar results in that only rare species 
at the 1 m × 1 m spatial scale differed from random.

Diversity measures mostly showed a negative relationship with 
the proportion of common species that made up the community in 
each plot, and a weaker positive relationship with the proportion of 
rare species that made up the community in each plot. However, this 
result was not consistent at the 5 m × 5 m spatial scale (Table 2).

4  |  DISCUSSION

Spatial patterns of functional diversity based on occurrence data 
appear more accurately represented by geographically rare spe-
cies than geographically common species as the sequential addition 
of species from rare to common often increased correlations with 
overall functional diversity faster than from common to rare. This, 
however, was not consistent across spatial scales or when percent-
age cover data were used. Previously, the importance of common 
species to species richness patterns (e.g. Kreft et al., 2006) has led 
authors to suggest that the comparison of species richness between 
areas with standardised sampling can be carried out using only com-
mon species (van Schalkwyk et al., 2019), allowing for rapid surveys. 
Our results, however, suggest that surveying common species only is 

F I G U R E  2  Sequential Pearson correlation coefficients between Petchey and Gaston’s dendrogram- based measure of functional diversity 
of subassemblages and the full assemblage at (a) 0.04 m × 0.04 m, (b) 0.2 m × 0.2 m, (c) 1 m × 1 m and (d) 5 m × 5 m. Species were added 
sequentially by rank from geographically rarest to geographically most common (dark blue line) and geographically most common to 
geographically rarest (dark yellow line). Light blue lines and gold lines show correlations where species were added in from rare to common 
and common to rare, respectively, where the species- by- trait matrix had been randomised 500 times, and dashed lines indicate the 95% 
confidence intervals generated from the randomisations. Correlations are plotted against the cumulative information of the subassemblage 
as in Figure 1
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F I G U R E  3  Sequential Pearson correlation coefficients between the functional dispersion of subassemblages and the full assemblage at 
(a) 0.04 m × 0.04 m, (b) 0.2 m × 0.2 m, (c) 1 m × 1 m and (d) 5 m × 5 m. Species were added sequentially by rank from geographically rarest to 
geographically most common (dark blue line) and geographically most common to geographically rarest (dark yellow line). Light blue lines and 
gold lines show correlations where species were added in from rare to common and common to rare where the species- by- trait matrix had 
been randomised 500 times, and dashed lines indicate the 95% confidence intervals generated from the randomisations. Correlations are 
plotted against the cumulative information of the subassemblage as in Figure 1

F I G U R E  4  Sequential Pearson correlation coefficients between the abundance- weighted functional dispersion of subassemblages 
and the full assemblage at (a) 0.04 m × 0.04 m, (b) 0.2 m × 0.2 m, (c) 1 m × 1 m and (d) 5 m × 5 m. Species were added sequentially by rank 
from geographically rarest to geographically most common (dark blue line) and geographically most common to geographically rarest (dark 
yellow line). Light blue lines and gold lines show correlations where species were added from rare to common and common to rare where 
the species- by- trait matrix had been randomised 500 times, and dashed lines indicate the 95% confidence intervals generated from the 
randomisations. Correlations are plotted against the cumulative information of the subassemblage as in Figure 1
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not sufficient for discerning spatial patterns of functional diversity, 
as common species often correlate less than we would expect from 
random with the overall spatial patterns of functional diversity. This 
result held when both categorical traits were included in the analy-
ses, as well as excluded (Figures S7 and S8).

Using a randomisation approach that swapped the species 
names in the species- by- trait matrix, we maintained trait covari-
ances and species richness within sites while randomising the trait 
values associated with those species. Rather than rare species dis-
proportionately contributing to patterns of functional diversity, the 

rare- to- common curve often fell within the 95% confidence inter-
vals of the randomisation, that is their contributions did not differ 
from random, while the common- to- rare curve for FDis and PGFD 
at the 0.2 m × 0.2 m and 1 m × 1 m spatial scales frequently cor-
related more weakly than expected from random. In many instances 
when only common species were included in the subassemblages, 
there was a negative correlation with the overall spatial distribution 
of functional diversity. Surveying only common species for spatial 
patterns of functional diversity is therefore likely to be misleading 
and supports the call that widespread species should not necessarily 

TA B L E  1  The standardised effect size of Petchey and Gaston’s functional diversity (PGFD) and functional dispersion (FDis) of the 25% 
most common and 25% most rare species, generated from a null distribution of 999 randomisations of the species- by- trait matrix. The 
p- value for the location of the observed functional diversity within the null distribution was calculated following Swenson (2012). Instances 
where the observed functional diversity differed significantly from random following a two- tailed significance test (i.e. p ≤ 0.025 or 
p ≥ 0.975) are shown in bold

Diversity Scale

Most common Most rare

Standardised effect size p- value Standardised effect size p- value

PGFD 0.04 × 0.04 0.279 0.618 −1.087 0.152

0.2 × 0.2 −1.032 0.165 0.057 0.526

1 × 1 −1.312 0.095 1.962 0.980

5 × 5 −1.552 0.077 0.228 0.563

FDis 0.04 × 0.04 −0.157 0.421 −2.061 0.024

0.2 × 0.2 −0.277 0.395 0.556 0.716

1 × 1 −0.417 0.334 1.516 0.936

5 × 5 −0.522 0.305 0.998 0.857

TA B L E  2  The median estimates and upper and lower credible intervals from MCMC models of species richness, Petchey and Gaston’s 
functional diversity (PGFD), functional dispersion (FDis) and functional dispersion using plant percentage cover (abundance- weighted FDis) 
with the proportion of the community made up by the 25% most common species and the proportion of the community made up by the 
25% rarest species. Instances where the credible intervals do not cross zero are shown in bold. CI, confidence intervals; DIC, deviance 
information criterion

Diversity

Proportion of common species Proportion of rare species

Scale (m) Median 2.5% CI 97.5% CI DIC Median 2.5% CI 97.5% CI DIC

Species richness 0.04 × 0.04 −0.735 −0.939 −0.525 35.99 0.730 0.206 1.249 253.23

0.2 × 0.2 −0.607 −0.796 −0.411 −202.93 0.751 0.239 1.267 −157.39

1 × 1 −0.611 −0.837 −0.399 −553.64 0.753 0.125 1.375 −527.68

5 × 5 −0.706 −1.525 0.120 −17.29 0.051 −1.586 1.648 −13.87

PGFD 0.04 × 0.04 −0.500 −0.683 −0.298 −21.85 0.436 −0.001 0.872 7.57

0.2 × 0.2 −0.723 −0.915 −0.529 −203.43 1.219 0.702 1.740 −162.12

1 × 1 −0.811 −1.198 −0.477 −113.32 1.610 0.566 2.653 −93.99

5 × 5 −4.885 −8.862 −0.871 42.78 6.261 −1.710 14.038 46.29

FDis 0.04 × 0.04 −0.034 −0.059 −0.010 −1872.95 0.105 0.049 0.161 −1879.29

0.2 × 0.2 −0.044 −0.058 −0.030 −2699.31 0.060 0.022 0.097 −2665.95

1 × 1 −0.019 −0.034 −0.006 −3247.02 0.015 −0.028 0.058 −3236.62

5 × 5 −0.071 −0.152 0.010 −105.21 0.196 0.069 0.320 −110.89

Abundance- 
weighted FDis

0.04 × 0.04 −0.075 −0.107 −0.044 −1635.01 0.071 −0.002 0.145 −1615.59

0.2 × 0.2 −0.072 −0.100 −0.044 −1992.04 0.101 0.028 0.174 −1971.01

1 × 1 −0.042 −0.074 −0.011 −2314.20 0.014 −0.082 0.109 −2306.55

5 × 5 −0.024 −0.214 0.168 −72.80 0.100 −0.243 0.436 −73.17
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be used as indicators of general biodiversity patterns (van Proosdij 
et al., 2016), particularly if occurrence data are being used.

In contrast to the curves for functional diversity, the common- 
to- rare curves for species richness fell within the 95% confidence 
intervals generated from the randomisation and above the rare- to- 
common curve at the 0.2 m × 0.2 m and 1 m × 1 m spatial scales, 
showing that common species contribute more to spatial patterns 
of species richness than rare species. This also matches previous 
investigations across multiple taxa that have showed a greater con-
tribution of common species than rare species to the spatial dis-
tribution of species richness (e.g. Lennon et al., 2004; Pearman & 
Weber, 2007), and may be a result of the consistency across com-
mon species of important drivers of distributions compared to rare 
species (Kreft et al., 2006; Vazquez & Gaston, 2004), although this 
needs more investigation. This result, combined with our results for 
functional diversity, indicates that common species hold more infor-
mation in terms of species richness distributions than they do for 
functional diversity.

The sequential correlations of common and rare species with 
species richness are, in part, a result of the range frequency distribu-
tions of species (Heegaard et al., 2013). Strongly right- skewed distri-
butions are thought to lead to higher correlations of geographically 
rare species with overall species richness (van Proosdij et al., 2016). 
At all scales, the range frequency distributions of species in our sur-
veys were right- skewed; however, at 0.2 m × 0.2 m and 1 m × 1 m, 
common species showed a stronger correlation with species rich-
ness than rare species. This may be a result of the interaction of 
the range frequency distribution with the overall distribution of spe-
cies richness across the sites (Heegaard et al., 2013; see Supporting 
Information). Šizling et al. (2009) suggest that a larger influence of 
geographically common species on species richness patterns is al-
most mathematically inevitable because of the importance of the 
sum of richnesses of sites at which a species occurs to the correla-
tion of species occupancy with species richness. However, the over-
lapping curves for common- to- rare and rare- to- common species 
richness correlations at the 0.04 m × 0.04 m and 5 m × 5 m spatial 
scales suggest this may not necessarily be the case.

With functional diversity there is another component in addi-
tion to the range frequency distribution of species that contrib-
utes to the observed spatial patterns. Species richness and PGFD 
showed similar distributions across all sites at the 0.2 m × 0.2 m and 
1 m × 1 m sampling scales (Figure S6) yet showed different contri-
butions of common and rare species to their spatial patterns. This 
is because, unlike species richness where every species contributes 
equally to the measure (i.e. the addition of a species to a site will 
always increase the species richness by one), different species can 
affect functional diversity measures by different amounts as a result 
of their functional distinctiveness, that is how similar are their trait 
values to other species within the community.

The contribution of rare species to functional diversity patterns 
ties in with previous findings that rare species are often function-
ally unique or distinct from each other as well as more common 
species (Jain et al., 2014; Leitão et al., 2016). Therefore, the lack of 

information held by common species in terms of spatial functional 
diversity patterns, may, in part, be a result of their lack of distinc-
tiveness from each other. Although we found that the 25% most 
common species were only less functionally diverse than expected 
from random (in terms of PGFD) at the 1 m × 1 m scale, plots with 
a high proportion of geographically common species showed lower 
functional and taxonomic diversity at all scales except the largest. 
This may explain the negative correlation sometimes observed for 
FDis and PGFD when only common species were included in the 
subassemblages as towards the left- hand end of these curves, com-
mon species make up 100% of the community across their distribu-
tion. Conversely, plots with a high proportion of geographically rare 
species showed higher diversity. There was only weak support for 
this, however, at the 5 m × 5 m sampling scale and for abundance- 
weighted FDis. Additionally, the models containing the 25% most 
common species performed better than the models containing the 
25% rarest species as they had a lower DIC. This supports our ob-
servation that, in many instances, the common- to- rare curve initially 
falls below the 95% confidence intervals generated from our rando-
misations, as the absence of rare species from the functional diver-
sity calculations means the most functionally diverse plots are not 
being well- estimated.

The difference between the common- to- rare and rare- to- 
common curves for FDis generally decreased when percentage 
cover data were used, as common species showed higher correla-
tions when the measure was abundance- weighted. At the smallest 
spatial scales, rare species can make up a substantial proportion of 
vegetation cover in any single plot, that is a single individual may 
cover the entire 0.04 m × 0.04 m, and therefore overwhelm the 
abundance- weighted measures of functional diversity within that 
plot. This explains the similarity of the common- to- rare and rare- 
to- common curves for the abundance- weighted measure of FDis at 
this scale. At larger spatial scales, it is unusual for geographically rare 
species to have significant cover, the effect of which we can observe 
in the larger two spatial scales for the abundance- weighted FDis 
where the rare- to- common curve falls below that of the common- 
to- rare curve, that is common species are contributing more to 
abundance- weighted FDis.

We acknowledge that trait selection can impact studies of func-
tional diversity. We took an approach to trait selection with the aim 
of minimising collinearity between traits and representing the intrin-
sic dimensionality of plant traits (Laughlin, 2014). To test whether 
trait selection affected our general conclusions, we ran our original 
analyses a second time including only continuous traits, that is ex-
cluding pollen vector and mode of reproduction. This analysis fur-
ther supported our conclusions that common species contributed 
less than expected to spatial patterns of functional diversity, and the 
gap between the rare- to- common curve and common- to- rare curve 
was even larger when categorical traits were excluded for both 
PGFD and FDis (Figures S7 and S8).

Although the spatial scales under investigation in this study 
were small, they were relevant for the Machair system where 
there are no large woody species. Many plant surveys, particularly 
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in grassland systems, are carried out at the 1– 2 m2 spatial scale or 
below; however, our results and approach can be applied across 
systems where sampling scales with the size of the individuals in 
that system. The observed variation with spatial scale highlights 
that surveys need to be carried out at appropriate scales and 
support the notion that biodiversity patterns are scale depen-
dent (McGlinn et al., 2019). The mechanisms underlying commu-
nity assembly are scale dependent, as reflected in the functional 
diversity– area relationship (Smith et al., 2013), and may explain 
the variation in our results with spatial scale. However, at the 
local scales investigated here, commonness and rarity are likely 
to be the result of niche differences and competition (Heegaard 
et al., 2013), rather than where the surveys lie in relation to the 
species' overall extent, which may be the case at broader spatial 
scales (Hengeveld & Haeck, 1982). Furthermore, the assembly 
processes at different spatial scales may vary between geograph-
ically rare and common species, and investigation into the differ-
ent environmental drivers of these subsets of species (e.g. Lennon 
et al., 2011) will provide further information on their distribution.

Similar to assembly processes, the classification of what is ‘rare’ 
and what is ‘common’ will vary with spatial scale. At all scales, we 
observed right- skewed distributions of rarity both in terms of area 
of occupancy (geographic rarity) and percentage cover of species. 
The skew for area of occupancy was not as strong at the 5 m × 5 m 
scale, however, with 23.5% of the species found in more than 50% of 
the plots. Therefore, at this larger scale, we may label fewer species 
as ‘rare’ than at smaller scales. Plotting against the cumulative infor-
mation rather than the number of species in each subassemblage 
accounts for this and allows us to compare the shapes of sequential 
common- rare curves across spatial scales without having to set arbi-
trary thresholds of what is classed as ‘rare’ or ‘common’.

The Machair grassland provides an ideal system to investigate 
spatial biodiversity patterns due to its high diversity and spatial 
heterogeneity at a local scale. Similar to the investigation of the im-
portance of commonness and rarity to spatial patterns of species 
richness, our approach can be applied across taxonomic groups and 
systems to investigate the generality of our results, as well as across 
spatial scales. The previously demonstrated functional distinctive-
ness of rare species compared to common in many systems (Jain 
et al., 2014; Leitão et al., 2016) may contribute to similar general 
patterns that we observe in the Machair, that is common species 
contribute less than rare species to spatial patterns of functional 
diversity, and future macroecological research into the distribution 
of functional diversity will benefit from applying the approach we 
present here across different taxa and ecosystems.

Together, our results show that when functional diversity is cal-
culated using occurrence data (presence– absence), common species 
will perform worse than random at capturing the spatial distribu-
tion of functional diversity. To estimate the spatial patterns of func-
tional diversity accurately, therefore, we ideally need data on the 
distribution of rare species, consistent trait data across species and 
abundance/percentage cover data. These will facilitate more accu-
rate estimates of both functional richness and occurrence- based 

measures (e.g. PGFD) in addition to measures of the weighted dis-
tribution of species in trait space (e.g. abundance- weighted FDis). 
When carrying out field surveys, rare species are often missed, for 
example due to decreased detectability, yet this could seriously ob-
scure apparent patterns of functional diversity. Using rarefaction 
methods that estimate expected functional diversity based on sam-
ple size may improve mapping of functional diversity in space across 
large spatial scales (Ricotta et al., 2010, 2012; Walker et al., 2008). 
We also need to address the deficit of rare species in trait databases 
(Violle et al., 2015) so that accurate assessments of functional di-
versity can be made. This would allow the inclusion of more traits 
that are potentially important for spatial partitioning or community 
assembly into the analyses, but where data are currently a limit-
ing factor, such as chemical or root traits (Laughlin, 2014; Sonnier 
et al., 2012).
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