1,201 research outputs found
Range contraction to a higher elevation: the likely future of the montane vegetation in South Africa and Lesotho
Global climate change is a major challenge for the future with serious potential impacts on biodiversity. Biodiversity in mountains is particularly vulnerable as many montane species are adapted to narrow microhabitats, making them less able to adjust to a climatic
change. It is considered important to investigate range changes in the South African Great Escarpment because of the high levels of biodiversity in these mountains, as well as their importance for water provision in South Africa. The current and future ranges of 46 montane plant species in South Africa and Lesotho were therefore modelled using biomod in R, using presence points and predictor variables which included rainfall and temperature worldclim layers. The performance of distribution models produced was evaluated using the Area Under the receiver operating Curve (AUC), True Skill Statistic (TSS), Sensitivity and Specificity. We calculated beta diversity and species richness changes between current and future climates for the group of 46 species, as well as shifts of the predicted presence region boundaries and centroids. We also analysed shifts in minimum, median and maximum elevations. Results show a contraction in species’ ranges towards higher elevation as has been documented from other mountain regions around the world. These results are a cause for concern as a warming climate is decreasing the potential regions of occurrence of montane species in South Africa and Lesotho’s mountainous regions of high biodiversity. This region is under a diverse range of conservation and land use management practises, and our results suggest a coordinated response to climate change is needed
Structural investigation into the threading intercalation of a chiral dinuclear ruthenium(II) polypyridyl complex through a B-DNA oligonucleotide
Herein we report the separation of the three stereoisomers of the DNA light-switch compound [{Ru(bpy)2}2(tpphz)]4+ (tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine) by column chromatography and the characterization of each stereoisomer by X-ray crystallography. The interaction of these compounds with a DNA octanucleotide d(GCATATCG).d(CGATATGC) has been studied using NMR techniques. Selective deuteration of the bipyridyl rings was needed to provide sufficient spectral resolution to characterize structures. NMR-derived structures for these complexes show a threading intercalation binding mode with slow and chirality-dependent rates. This represents the first solution structure of an intercalated bis-ruthenium ligand. Intriguingly, we find that the binding site selectivity is dependent on the nature of the stereoisomer employed, with Λ RuII centers showing a better intercalation fit
Simple Dynamics on the Brane
We apply methods of dynamical systems to study the behaviour of the
Randall-Sundrum models. We determine evolutionary paths for all possible
initial conditions in a 2-dimensional phase space and we investigate the set of
accelerated models. The simplicity of our formulation in comparison to some
earlier studies is expressed in the following: our dynamical system is a
2-dimensional Hamiltonian system, and what is more advantageous, it is free
from the degeneracy of critical points so that the system is structurally
stable. The phase plane analysis of Randall-Sundrum models with isotropic
Friedmann geometry clearly shows that qualitatively we deal with the same types
of evolution as in general relativity, although quantitatively there are
important differences.Comment: an improved version, 34 pages, 9 eps figure
Contrasting species and functional beta diversity in montane ant assemblages
Aim Beta diversity describes the variation in species composition between sites and can be used to infer why different species occupy different parts of the globe. It can be viewed in a number of ways. First, it can be partitioned into two distinct patterns: turnover and nestedness. Second, it can be investigated from either a species identity or a functional-trait point of view. We aim to document for the first time how these two aspects of beta diversity vary in response to a large environmental gradient. Location Maloti-Drakensberg Mountains, southern Africa. Methods We sampled ant assemblages along an extensive elevational gradient
(900–3000 m a.s.l.) twice yearly for 7 years, and collected functional-trait information related to the species’ dietary and habitat-structure preferences. We used recently developed methods to partition species and functional beta diversity into their turnover and nestedness components. A series of null models were used to test whether the observed beta diversity patterns differed from random expectations. Results Species beta diversity was driven by turnover, but functional beta diversity was composed of both turnover and nestedness patterns at different parts of the gradient. Null models revealed that deterministic processes were likely to be responsible for the species patterns but that the functional changes were indistinguishable from stochasticity. Main conclusions Different ant species are found with increasing elevation, but they tend to represent an increasingly nested subset of the available functional strategies. This finding is unique and narrows down the list of possible
factors that control ant existence across elevation. We conclude that diet and
habitat preferences have little role in structuring ant assemblages in montane
environments and that some other factor must be driving the non-random patterns of species turnover. This finding also highlights the importance of distinguishing
between different kinds of beta diversity
On the muon neutrino mass
During the runs of the PS 179 experiment at LEAR of CERN, we photographed an
event of antiproton-Ne absorption, with a complete pi+ -> mu+ ->e+ chain. From
the vertex of the reaction a very slow energy pi+ was emitted. The pi+ decays
into a mu+ and subsequently the mu+ decays into a positron. At the first decay
vertex a muon neutrino was emitted and at the second decay vertex an electron
neutrino and a muon antineutrino. Measuring the pion and muon tracks and
applying the momentum and energy conservation and using a classical statistical
interval estimator, we obtained an experimental upper limit for the muon
neutrino mass: m_nu < 2.2 MeV at a 90% confidence level. A statistical analysis
has been performed of the factors contributing to the square value of the
neutrino mass limit.Comment: 18 pages, 5 eps figure
Dental caries experience, care index and restorative index in children with learning disabilities and children without learning disabilities; a systematic review and meta-analysis
Background
Children with learning disabilities (CLD) have worse health outcomes than children with no learning disabilities (CNLD). This systematic review compared caries experience and met dental care need for CLD to CNLD using Decayed, Missing, Filled Permanent Teeth (DMFT) and decayed, missing/extracted, filled primary teeth (dmft/deft), care index (CI), and restorative index (RI) values.
Methods
Without date or language restrictions four databases were searched for; cross-sectional studies comparing caries experience and CI/ RI in CLD matched to groups of CNLD. Screening and data extraction were carried out independently and in duplicate. Risk of bias was assessed using the Newcastle-Ottawa Scale. Meta-analyses were carried out (random effects model).
Results
There were 25 articles with 3976 children (1 to 18 years old), from 18 countries, fitting the inclusion criteria. Children with; Down syndrome were investigated in 11 studies, autism in 8 and mixed learning disabilities in 6. The overall mean DMFT for CLD was 2.31 (standard deviation±1.97; range 0.22 to 7.2) and for CNLD was 2.51 (±2.14; 0.37 to 4.76). Using standardised mean difference (SMD), meta-analysis showed no evidence of a difference between CLD and CNLD (n = 16 studies) for caries experience (SMD = -0.43; 95%CI = -0.91 to 0.05). This was similar for sub-groups of children with autism (SMD = -0.28; 95%CI = 1.31 to 0.75) and mixed disabilities (SMD = 0.26; 95%CI = -0.94 to 1.47). However, for children with Down syndrome, caries experience was lower for CLD than CNLD (SMD = -0.73; 95%CI = -1.28 to − 0.18). For primary teeth, mean dmft/deft was 2.24 for CLD and 2.48 for CNLD (n = 8 studies). Meta-analyses showed no evidence of a difference between CLD and CNLD for caries experience across all disability groups (SMD = 0.41; 95% CI = -0.14 to 0.96), or in sub-groups: Down syndrome (SMD = 0.55; 95%CI- = − 0.40 to 1.52), autism (SMD = 0.43; 95%CI = -0.53 to 2.39) and mixed disabilities (SMD = -0.10; 95%CI = -0.34 to 0.14). The studies’ risk of bias were medium to high.
Conclusion
There was no evidence of a difference in caries levels in primary or permanent dentitions for CLD and CNLD. This was similar for learning disability sub-groups, except for Down syndrome where dental caries levels in permanent teeth was lower. Data on met need for dental caries was inconclusive
Electronic structure and ferroelectricity in SrBi2Ta2O9
The electronic structure of SrBi2Ta2O9 is investigated from first-principles,
within the local density approximation, using the full-potential linearized
augmented plane wave (LAPW) method. The results show that, besides the large
Ta(5d)-O(2p) hybridization which is a common feature of the ferroelectric
perovskites, there is an important hybridization between bismuth and oxygen
states. The underlying static potential for the ferroelectric distortion and
the primary source for ferroelectricity is investigated by a lattice-dynamics
study using the Frozen Phonon approach.Comment: 17 pages, 7 figures. Phys. Rev. B, in pres
The Local Bubble and Interstellar Material Near the Sun
The properties of interstellar matter (ISM) at the Sun are regulated by our
location with respect to the Local Bubble (LB) void in the ISM. The LB is
bounded by associations of massive stars and fossil supernovae that have
disrupted natal ISM and driven intermediate velocity ISM into the LB interior
void. The Sun is located in such a driven ISM parcel. The Local Fluff has a
bulk velocity of 19 km/s in the LSR, and an upwind direction towards the center
of the gas and dust ring formed by the Loop I supernova remnant interaction
with the LB. When the ram pressure of the LIC is included in the total LIC
pressure, and if magnetic thermal and cosmic ray pressures are similar, the LIC
appears to be in pressure equilibrium with the local hot bubble plasma.Comment: Proceedings of Symposium on the Composition of Matter, honoring
Johannes Geiss on the occasion of his 80th birthday. Space Science Reviews
(in press
Ecological niche and potential geographic distribution of the invasive fruit fly *Bactrocera invadens* (Diptera, Tephritidae)
Two correlative approaches to the challenge of ecological niche modeling (genetic algorithm, maximum entropy) were used to estimate the potential global distribution of the invasive fruit fly, Bactrocera invadens, based on associations between known occurrence records and a set of environmental predictor variables. The two models yielded similar estimates, largely corresponding to Equatorial climate classes with high levels of precipitation. The maximum entropy approach was somewhat more conservative in its evaluation of suitability, depending on thresholds for presence/absence that are selected, largely excluding areas with distinct dry seasons; the genetic algorithm models, in contrast, indicate that climate class as partly suitable. Predictive tests based on independent distributional data indicate that model predictions are quite robust. Field observations in Benin and Tanzania confirm relationships between seasonal occurrences of this species and humidity and temperature
Equation of state for Universe from similarity symmetries
In this paper we proposed to use the group of analysis of symmetries of the
dynamical system to describe the evolution of the Universe. This methods is
used in searching for the unknown equation of state. It is shown that group of
symmetries enforce the form of the equation of state for noninteracting scaling
multifluids. We showed that symmetries give rise the equation of state in the
form and energy density
, which
is commonly used in cosmology. The FRW model filled with scaling fluid (called
homological) is confronted with the observations of distant type Ia supernovae.
We found the class of model parameters admissible by the statistical analysis
of SNIa data. We showed that the model with scaling fluid fits well to
supernovae data. We found that and (), which can correspond to (hyper) phantom fluid, and to a
high density universe. However if we assume prior that
then the favoured model is close to concordance
CDM model. Our results predict that in the considered model with
scaling fluids distant type Ia supernovae should be brighter than in
CDM model, while intermediate distant SNIa should be fainter than in
CDM model. We also investigate whether the model with scaling fluid is
actually preferred by data over CDM model. As a result we find from
the Akaike model selection criterion prefers the model with noninteracting
scaling fluid.Comment: accepted for publication versio
- …