960 research outputs found

    Metabolism of alcaligenes denitrificans in biofilm vs planktonic cells

    Get PDF
    Aims: To compare the effect of phosphorous concentration (200 mg P 1-1 and 20 mg P 1-1) on the denitrifying efficiency of Alcaligenes denitrificans when in the form of planktonic cells or in the form of a biofilm, and to select the most adequate C/N ratio. Methods and Results: Two types of assays were carried out: with planktonic cells and with cells in biofilm form. Anoxic bottles with the appropriate C/N and phosphorous concentration were incubated at 30°C and submitted to orbital shaking at 150 rev min-1. The specific activity of cells in biofilm form, in terms of substrate consumption, was significantly higher than cells in planktonic form. With regard to the effect of increasing phosphorous concentration, an increase in specific activity was also only evident when the cells were in biofilm form. Conclusions: The two forms showed different performances and phosphorous concentration only markedly affected the biofilm form. Significance and Impact of the Study: The importance of the C/N/P ratio in the denitrification process is demonstrated. As there was no report in the literature about the stoichiometric relationship of heterotrophic denitrification with citrate, its stoichiometry, including the requirement for cell synthesis, was determined.Instituto de Biotecnologia e Química Fina (IBQF). PRAXIS XXI

    Energy efficient operation of photocatalytic reactors based on UV LEDs for pollution remediation in water.

    Get PDF
    Photocatalytic technology using TiO2 is one of the emerging approaches for water treatment, especially as a final step to remove complex organics such as pesticides, hormones or humic acids. Titanium dioxide (TiO2) is a semiconductor material with strong UV absorption band and exhibits strong photocatalytic activity. The photocatalytic activity of TiO2 powders have been extensively studied, using UV light sources. However, the incident photons that initiate the process of photocatalytic oxidation using titanium dioxide are not efficiently used, this is responsible for the low photonic efficiency that characterise oxidation of aqueous pollutants hence its limitation in industrial applications. Periodic illumination has been investigated as a means of increasing the photonic efficiency in a photoreactor with acid orange as a model pollutant. Results indicate more than four-fold increase in photonic efficiency through periodic illumination compared to continuous illumination. This approach can improve the energy efficiency of the photocatalytic water treatment systems

    Single- and multi-walled carbon nanotubes viewed as elastic tubes with Young's moduli dependent on layer number

    Full text link
    The complete energy expression of a deformed single-walled carbon nanotube (SWNT) is derived in the continuum limit from the local density approximation model proposed by Lenosky {\it et al.} \lbrack Nature (London) {\bf 355}, 333 (1992)\rbrack and shows to be content with the classic shell theory by which the Young's modulus, the Poisson ratio and the effective wall thickness of SWNTs are obtained as Y=4.70Y=4.70TPa, ν=0.34\nu=0.34, h=0.75A˚h=0.75{\rm \AA}, respectively. The elasticity of a multi-walled carbon nanotube (MWNT) is investigated as the combination of the above SWNTs of layer distance d=3.4A˚d=3.4 {\rm \AA} and the Young's modulus of the MWNT is found to be an apparent function of the number of layers, NN, varying from 4.70TPa to 1.04TPa for N=1 to \infty.Comment: 4 pages, 1 figur

    Simple Dynamics on the Brane

    Full text link
    We apply methods of dynamical systems to study the behaviour of the Randall-Sundrum models. We determine evolutionary paths for all possible initial conditions in a 2-dimensional phase space and we investigate the set of accelerated models. The simplicity of our formulation in comparison to some earlier studies is expressed in the following: our dynamical system is a 2-dimensional Hamiltonian system, and what is more advantageous, it is free from the degeneracy of critical points so that the system is structurally stable. The phase plane analysis of Randall-Sundrum models with isotropic Friedmann geometry clearly shows that qualitatively we deal with the same types of evolution as in general relativity, although quantitatively there are important differences.Comment: an improved version, 34 pages, 9 eps figure

    COVID-19 vaccine safety in Scotland - background rates of adverse events of special interest

    Get PDF
    Objectives: Mass COVID-19 vaccination commenced in December 2020 in Scotland. Monitoring vaccine safety relies on accurate background incidence rates (IRs) for health outcomes potentially associated with vaccination. This study aimed to quantify IRs in Scotland of adverse events of special interest (AESI) potentially associated with COVID-19 vaccination. Study design and methods: IRs and 95% confidence intervals (CIs) for 36 AESI were calculated retrospectively for the pre-COVID-19 pandemic period (01 January 2015–31 December 2019) and the COVID-19 pandemic period (01 April 2020–30 November 2020), with age-sex stratification, and separately by calendar month and year. Incident cases were determined using International Classification of Diseases-10th Revision (ICD-10)–coded hospitalisations. Results: Prepandemic population-wide IRs ranged from 0.4 (0.3–0.5 CIs) cases per 100,000 person-years (PYRS) for neuromyelitis optica to 478.4 (475.8–481.0 CIs) cases per 100,000 PYRS for acute renal failure. Pandemic population-wide IRs ranged from 0.3 (0.2–0.5 CIs) cases per 100,000 PYRS for Kawasaki disease to 483.4 (473.2–493.7 CIs) cases per 100,000 PYRS for acute coronary syndrome. All AESI IRs varied by age and sex. Ten AESI (acute coronary syndrome, acute myocardial infarction, angina pectoris, heart failure, multiple sclerosis, polyneuropathies and peripheral neuropathies, respiratory failure, rheumatoid arthritis and polyarthritis, seizures and vasculitis) had lower pandemic than prepandemic period IRs overall. Only deep vein thrombosis and pulmonary embolism had a higher pandemic IR. Conclusion: Lower pandemic IRs likely resulted from reduced health-seeking behaviours and healthcare provision. Higher IRs may be associated with SARS-CoV-2 infections. AESI IRs will facilitate future vaccine safety studies in Scotland

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Statistical Theory of Spin Relaxation and Diffusion in Solids

    Full text link
    A comprehensive theoretical description is given for the spin relaxation and diffusion in solids. The formulation is made in a general statistical-mechanical way. The method of the nonequilibrium statistical operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation dynamics of a spin subsystem. Perturbation of this subsystem in solids may produce a nonequilibrium state which is then relaxed to an equilibrium state due to the interaction between the particles or with a thermal bath (lattice). The generalized kinetic equations were derived previously for a system weakly coupled to a thermal bath to elucidate the nature of transport and relaxation processes. In this paper, these results are used to describe the relaxation and diffusion of nuclear spins in solids. The aim is to formulate a successive and coherent microscopic description of the nuclear magnetic relaxation and diffusion in solids. The nuclear spin-lattice relaxation is considered and the Gorter relation is derived. As an example, a theory of spin diffusion of the nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown that due to the dipolar interaction between host nuclear spins and impurity spins, a nonuniform distribution in the host nuclear spin system will occur and consequently the macroscopic relaxation time will be strongly determined by the spin diffusion. The explicit expressions for the relaxation time in certain physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference
    corecore