17,696 research outputs found

    Use of scanned detection in optical position encoders

    No full text
    Published versio

    Numerical methods for computing Casimir interactions

    Full text link
    We review several different approaches for computing Casimir forces and related fluctuation-induced interactions between bodies of arbitrary shapes and materials. The relationships between this problem and well known computational techniques from classical electromagnetism are emphasized. We also review the basic principles of standard computational methods, categorizing them according to three criteria---choice of problem, basis, and solution technique---that can be used to classify proposals for the Casimir problem as well. In this way, mature classical methods can be exploited to model Casimir physics, with a few important modifications.Comment: 46 pages, 142 references, 5 figures. To appear in upcoming Lecture Notes in Physics book on Casimir Physic

    A paleolimnological reconstruction of mid and late holocene climate change in South Georgia

    Get PDF
    South Georgia is located at the barrier between Antarctica and the mid-latitudes which makes it a key location to determine the main drivers of past and present-day climate variability and to assess whether the climate in the South Atlantic was synchronous with Antarctica or South America. Here we performed a sedimentological, high resolution (ITRAX) geochemical, and fossil diatom and pigment analysis of a 5.41 m long, ca. 8000 cal yr BP, sediment core from Fan Lake, Annenkov Island, South Georgia (54°29’0’’S, 37°5’0’’W) in an attempt to separate the influence of Holocene palaeoclimatic variability from changes in catchment stability and glacier activity. While radiocarbon ages of events in the top 250 cm (c. 4 ka) of this core appear to be broadly in line with some other studies on South Georgia, the chronology of the lower half still poses several questions. The main lithological division in the profile is marked by the establishment of finely laminated sedimentation at c. 250 cm (4000 yrs BP) and is also picked out by the diatom and pigment analysis. This change is characterized by a reduction to low stable magnetic susceptibility values and a step-change increase in organic matter, and is most likely related to deglaciation of the lake catchment during the ‘Mid Holocene Hypsithermal’. Although the diatom composition is dominated by a single species (i.e., Cyclotella stelligera), relatively minor, but sometimes significant, fluctuations in other diatom species occur in the top 250 cm (mid-late Holocene). Interestingly, the most remarkable change in the diatom record occurs at c. 100 cm (1000 cal yr BP) and coincides with an increase in general lake productivity. We link these changes to increased catchment disturbance at c. 1000 cal yr BP, which is possibly associated with deglaciation following one of four relatively minor ‘post-cooling events’ during the late Holocene

    Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata.

    Get PDF
    Highly specific seed market classes for cowpea and other grain legumes exist because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large seeded lines. In this work we applied 1,536-plex SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker-based selection approaches to increase the frequency of progeny with large seed. For 804 individuals derived from eight bi-parental populations, QTL analysis was used to identify markers linked to 10 trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total 10 QTLs were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates

    Compatibility of a model for the QCD-Pomeron and chiral-symmetry breaking phenomenologies

    Get PDF
    The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.Comment: 21 pages, uuencoded latex file, 3 postscript figures, uses epsf.sty and epsf.tex. To be published in Phys. Lett.

    Critical coupling for dynamical chiral-symmetry breaking with an infrared finite gluon propagator

    Get PDF
    We compute the critical coupling constant for the dynamical chiral-symmetry breaking in a model of quantum chromodynamics, solving numerically the quark self-energy using infrared finite gluon propagators found as solutions of the Schwinger-Dyson equation for the gluon, and one gluon propagator determined in numerical lattice simulations. The gluon mass scale screens the force responsible for the chiral breaking, and the transition occurs only for a larger critical coupling constant than the one obtained with the perturbative propagator. The critical coupling shows a great sensibility to the gluon mass scale variation, as well as to the functional form of the gluon propagator.Comment: 19 pages, latex, 3 postscript figures, uses epsf.sty and epsf.tex. To be published in Phys. Lett.

    Delivering reform in English healthcare: an ideational perspective

    Get PDF
    A variety of perspectives has been put forward to understand reform across healthcare systems. Recently, some have called for these perspectives to give greater recognition to the role of ideational processes. The purpose of this article is to present an ideational approach to understanding the delivery of healthcare reform. It draws on a case of English healthcare reform – the Next Stage Review led by Lord Darzi – to show how the delivery of its reform proposals was associated with four ideational frames. These frames built on the idea of “progress” in responding to existing problems; the idea of “prevailing policy” in forming part of a bricolage of ideas within institutional contexts; the idea of “prescription” as top-down structural change at odds with local contexts; and the idea of “professional disputes” in challenging the notion of clinical engagement across professional groups. The article discusses the implications of these ideas in furthering our understanding of policy change, conflict and continuity across healthcare settings

    The tectonic development and erosion of the knox subglacial sedimentary basin, East Antarctica

    No full text
    Sedimentary basins beneath the East Antarctic Ice Sheet (EAIS) have immense potential to inform models of the tectonic evolution of East Antarctica and its ice-sheet. However, even basic characteristics such as thickness and extent are often unknown. Using airborne geophysical data, we resolve the tectonic architecture of the Knox Subglacial Sedimentary Basin in western Wilkes Land. In addition, we apply an erosion restoration model to reconstruct the original basin geometry for which we resolve geometry typical of a transtensional pull-apart basin. The tectonic architecture strongly indicates formation as a consequence of the rifting of India from East Gondwana from ca. 160-130 Ma, and we suggest a spatial link with the western Mentelle Basin offshore Western Australia. The erosion restoration model shows that erosion is confined within the rift margins, suggesting that rift structure has strongly influenced the evolution of the Denman and Scott ice streams
    corecore