15 research outputs found

    Molecular Dynamics Simulations of p97 Including Covalent, Allosteric and ATP-Competitive Inhibitors

    Get PDF
    Binary (nucleotide-protein dimer and hexamer complexes) and ternary (nucleotide-protein-inhibitor complexes) p97 complexes were subjected to molecular dynamics simulations in an attempt to further our understanding of the p97 protein oligomer domain stability and, more importantly, of the recently reported diverse molecular mechanisms of inhibition including allosteric, ATP-competitive and covalent inhibitors. Analysis of stable states following equilibration phases indicated a higher intrinsic stability of the homohexamer as opposed to the dimer, and of N-D1 domains as opposed to the D2 domain. The molecular dynamics of the proposed allosteric binding model reproduced important molecular interactions identified experimentally with high frequency throughout the trajectory. Observed conformational changes occurring in the D2 nucleotide binding site provided a novel bind-rearrange-react hypothesis of stepwise molecular events involved in the specific covalent inhibitor mode of action

    Endosperm structure and Glycemic Index of Japonica Italian rice varieties

    Get PDF
    Introduction: Given that rice serves as a crucial staple food for a significant portion of the global population and with the increasing number of individuals being diagnosed with diabetes, a primary objective in genetic improvement is to identify and cultivate low Glycemic Index (GI) varieties. This must be done while ensuring the preservation of grain quality. Methods: 25 Italian rice genotypes were characterized calculating their GI "in vivo" and, together with other 29 Italian and non-Italian genotypes they were studied to evaluate the grain inner structure through Field Emission Scanning Electron Microscopy (FESEM) technique. Using an ad-hoc developed algorithm, morphological features were extracted from the FESEM images, to be then inspected by means of multivariate data analysis methods. Results and discussion: Large variability was observed in GI values (49 to 92 with respect to glucose), as well as in endosperm morphological features. According to the percentage of porosity is possible to distinguish approximately among rice varieties having a crystalline grain ( 5%), and a third group having intermediate characteristics. Waxy rice varieties were not united by a certain porosity level, but they shared a low starch granules eccentricity. With reference to morphological features, rice varieties with low GI (<55) seem to be characterized by large starch granules and low porosity values. Our data testify the wide variability of Italian rice cultivation giving interesting information for future breeding programs, finding that the structure of the endosperm can be regarded as a specific characteristic of each variety

    GABA receptor-mediated effects in the peripheral nervous system:A cross-interaction with neuroactive steroids

    No full text
    A review. GABA, the major inhibitory neurotransmitter in the adult mammalian central nervous system (CNS), exerts its action via an interaction with specific receptors (e.g., GABAA and GABAB). These receptors are expressed not only in neurons but also on glial cells of the CNS, which might represent a target for the allosteric action of neuroactive steroids. Herein, we have demonstrated first that in the peripheral nervous system (PNS), the sciatic nerve and myelin-producing Schwann cells express both GABAA and GABAB receptors. Specific ligands, muscimol and baclofen, resp., control Schwann-cell proliferation and expression of some specific myelin proteins (i.e., glycoprotein P0 and peripheral myelin protein 22 [PMP22]). Moreover, the progesterone (P) metabolite allopregnanolone, acting via the GABAA receptor, can influence PMP22 synthesis. In addn., we demonstrate that P, dihydroprogesterone, and allopregnanolone influence the expression of GABAB subunits in Schwann cells. The results suggest, at least in the myelinating cells of the PNS, a cross-interaction within the GABAergic receptor system, via GABAA and GABAB receptors and neuroactive steroid

    A recombination event in the closely linked plasminogen and apolipoprotein(a)gene loci

    No full text
    Genetic studies as well as in situ hybridisation data have strongly demonstrated that the genes coding for apoprotein(a) and plasminogen are linked and localised to chromosome 6 at band 6q26-27. We describe in this report the presence of a recombination event in a region of approximately 50 kb of DNA separating the two genes. The recombination was found in an Italian family, in which a mutation affecting both plasminogen plasma level and activity of plasminogen activity has been detected. Polymerase chain reaction and sequencing analysis showed the presence of a mutation different from those previously reported in two Japanese families

    Discovery of 2‑(Cyclohexylmethylamino)pyrimidines as a New Class of Reversible Valosine Containing Protein Inhibitors

    No full text
    Valosine-containing protein (VCP), also known as p97 or cdc48 in yeast, is a highly abundant protein belonging to the AAA ATPase family involved in a number of essential cellular functions, including ubiquitin–proteasome mediated protein degradation, Golgi reassembly, transcription activation, and cell cycle control. Altered expression of VCP has been detected in many cancer types sometimes associated with poor prognosis. Furthermore, VCP mutations are causative of some neurodegenerative disorders. In this paper we report the discovery, synthesis, and structure–activity relationships of substituted 2-aminopyrimidines, representing a new class of reversible VCP inhibitors. This class of compounds, identified in a HTS campaign against recombinant VCP, has been progressively expanded and manipulated to increase biochemical potency and gain cellular activity

    Alkylsulfanyl-1,2,4-triazoles, a New Class of Allosteric Valosine Containing Protein Inhibitors. Synthesis and Structure–Activity Relationships

    No full text
    Valosine containing protein (VCP), also known as p97, is a member of AAA ATPase family that is involved in several biological processes and plays a central role in the ubiquitin-mediated degradation of misfolded proteins. VCP is an ubiquitously expressed, highly abundant protein and has been found overexpressed in many tumor types, sometimes associated with poor prognosis. In this respect, VCP has recently received a great deal of attention as a potential new target for cancer therapy. In this paper, the discovery and structure–activity relationships of alkylsulfanyl-1,2,4-triazoles, a new class of potent, allosteric VCP inhibitors, are described. Medicinal chemistry manipulation of compound <b>1</b>, identified via HTS, led to the discovery of potent and selective inhibitors with submicromolar activity in cells and clear mechanism of action at consistent doses. This represents a first step toward a new class of potential anticancer agents
    corecore