37 research outputs found

    Regulatory Role Played by the mRNA Binding Protein Tristetraprolin in the Skin and its Involvement in Different Diseases

    Get PDF
    The mRNA binding protein Tristetraprolin (TTP), encoded by the ZFP36 gene, plays a fundamental regulatory role in a wide variety of cellular processes by means of its widespread expression in different tissues, and of its ability to post transcriptionally regulate the stability, and therefore the expression, of multiple specific target mRNAs. Because of these features, TTP expression and activity are strictly regulated, and malfunctions of such mechanisms underlie different pathologies. Here we recapitulate the role of TTP in the skin, and its involvement in different conditions, with special reference to psoriasis and cancer

    In Vitro, Ex Vivo and In Vivo Models for the Study of Pemphigus

    Get PDF
    Pemphigus is a life-threatening autoimmune disease. Several phenotypic variants are part of this family of bullous disorders. The disease is mainly mediated by pathogenic autoantibodies, but is also directed against two desmosomal adhesion proteins, desmoglein 1 (DSG1) and 3 (DSG3), which are expressed in the skin and mucosae. By binding to their antigens, autoantibodies induce the separation of keratinocytes, in a process known as acantholysis. The two main Pemphigus variants are Pemphigus vulgaris and foliaceus. Several models of Pemphigus have been described: in vitro, ex vivo and in vivo, passive or active mouse models. Although no model is ideal, different models display specific characteristics that are useful for testing different hypotheses regarding the initiation of Pemphigus, or to evaluate the efficacy of experimental therapies. Different disease models also allow us to evaluate the pathogenicity of specific Pemphigus autoantibodies, or to investigate the role of previously not described autoantigens. The aim of this review is to provide an overview of Pemphigus disease models, with the main focus being on active models and their potential to reproduce different disease subgroups, based on the involvement of different autoantigens

    A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants

    Get PDF
    : Background: Pemphigus is a life-threatening blistering autoimmune disease. Several forms, characterized by the presence of autoantibodies against different autoantigens, have been described. In Pemphigus Vulgaris (PV), autoantibodies target the cadherin Desmoglein 3 (DSG3), while in Pemphigus foliaceous (PF) autoantibodies target the cadherin Desmoglein 1 (DSG1). Another variant, mucocutaneous Pemphigus, is characterized by the presence of IgG against both DSG1 and DSG3. Moreover, other forms of Pemphigus characterized by the presence of autoantibodies against other autoantigens have been described. With regard to animal models, one can distinguish between passive models, where pathological IgG are transferred into neonatal mice, and active models, where B cells deriving from animals immunized against a specific autoantigen are transferred into immunodeficient mice that develop the disease. Active models recreate PV and a form of Pemphigus characterized by the presence of IgG against the cadherin Desmocollin 3 (DSC3). Further approaches allow to collect sera or B/T cells from mice immunized against a specific antigen to evaluate the mechanisms underlying the onset of the disease. Objective: To develop and characterize a new active model of Pemphigus where mice express auto antibodies against either DSG1 alone, or DSG1 and DSG3, thereby recapitulating PF and mucocutaneous Pemphigus, respectively. In addition to the existing models, with the active models reported in this work, it will be possible to recapitulate and mimic the main forms of pemphigus in adult mice, thus allowing a better understanding of the disease in the long term, including the benefit/risk ratio of new therapies. Results: The new DSG1 and the DSG1/DSG3 mixed models were developed as proposed. Immunized animals, and subsequently, animals that received splenocytes from the immunized donors produce a high concentration of circulating antibodies against the specific antigens. The severity of the disease was assessed by evaluating the PV score, evidencing that the DSG1/DSG3 mixed model exhibits the most severe symptoms among those analyzed. Alopecia, erosions, and blistering were observed in the skin of DSG1, DSG3 and DSG1/DSG3 models, while lesions in the mucosa were observed only in DSG3 and DSG1/DSG3 animals. The effectiveness of the corticosteroid Methyl-Prednisolone was evaluated in the DSG1 and DSG1/DSG3 models, that showed only partial responsiveness

    Development of a Desmocollin-3 Active Mouse Model Recapitulating Human Atypical Pemphigus

    Get PDF
    Pemphigus vulgaris (PV) is a life-threatening mucocutaneous autoimmune blistering disease. It is often associated with autoantibodies to the desmosomal adhesion proteins Desmoglein 3 (DSG3) and Desmoglein 1 (DSG1). Recently, auto-antigens, such as desmocollins and others have been described in PV and in atypical pemphigus forms such as Pemphigus Herpetiformis (PH), Pemphigus Vegetans (PVeg), and Paraneoplastic Pemphigus (PP). Desmocollins belong to a cadherin subfamily that provides structure to the desmosomes and play an important role in cell-to-cell adhesion. In order to verify the pathogenic activity of anti-Desmocollin 3 (DSC3) antibodies, we developed an active disease model of pemphigus expressing anti-DSC3 autoantibodies or antiDSC3 and anti-DSG3 antibodies. This approach included the adoptive transfer of DSC3 and/or DSG3 lymphocytes to Rag2(-/-) immunodeficient mice that express DSC3 and DSG3. Our results show that the presence of anti-DSC3 auto-antibodies is sufficient to determine the appearance of a pathological phenotype relatable to pemphigus, but with features not completely super-imposable to those observed in the DSG3 active model, suggesting that the DSC3 active model might mimic the atypical pemphigus. Moreover, the presence of both anti-DSC3 and anti-DSG3 antibodies determines a more severe phenotype and a slower response to prednisolone. In conclusion, we have developed an adult DSC3 pemphigus mouse model that differs from the DSG3 model and supports the concept that antigens other than desmogleins may be responsible for different phenotypes in human pemphigus

    Using atomic interference to probe atom-surface interaction

    Get PDF
    We show that atomic interference in the reflection from two suitably polarized evanescent waves is sensitive to retardation effects in the atom-surface interaction for specific experimental parameters. We study the limit of short and long atomic de Broglie wavelength. The former case is analyzed in the semiclassical approximation (Landau-Zener model). The latter represents a quantum regime and is analyzed by solving numerically the associated coupled Schroedinger equations. We consider a specific experimental scheme and show the results for rubidium (short wavelength) and the much lighter meta-stable helium atom (long wavelength). The merits of each case are then discussed.Comment: 11 pages, including 6 figures, submitted to Phys. Rev. A, RevTeX sourc

    Driving the atom by atomic fluorescence: analytic results for the power and noise spectra

    Get PDF
    We study how the spectral properties of resonance fluorescence propagate through a two-atom system. Within the weak-driving-field approximation we find that, as we go from one atom to the next, the power spectrum exhibits both sub-natural linewidth narrowing and large asymmetries while the spectrum of squeezing narrows but remains otherwise unchanged. Analytical results for the observed spectral features of the fluorescence are provided and their origin is thoroughly discussed.Comment: 13 pages, 5 figures; to be published in Phys. Rev. A Changed title and conten

    Humoral and cellular immune response elicited by mRNA vaccination against SARS-CoV-2 in people living with HIV (PLWH) receiving antiretroviral therapy (ART) according with current CD4 T-lymphocyte count

    Get PDF
    BACKGROUND: Data on SARS-CoV-2 vaccine immunogenicity in PLWH are currently limited. Aim of the study was to investigate immunogenicity according to current CD4 T-cell count. METHODS: PLWH on ART attending a SARS-CoV-2 vaccination program, were included in a prospective immunogenicity evaluation after receiving BNT162b2 or mRNA-1273. Participants were stratified by current CD4 T-cell count (poor CD4 recovery, PCDR: 500/mm^{3}). RBD-binding IgG, SARS-CoV-2 neutralizing antibodies (nAbs) and IFN-γ release were measured. As control group, HIV-negative healthcare workers (HCWs) were used. FINDINGS: Among 166 PLWH after 1 month from the second dose, detectable RBD-binding IgG were elicited in 86.7% of PCDR, 100% of ICDR, 98.7% of HCDR, and a neutralizing titre ≥1:10 elicited in 70.0%, 88.2% and 93.1%, respectively. Compared to HCDR, all immune response parameters were significantly lower in PCDR. After adjusting for confounders, current CD4 T-cell 500 cell/mm^{3} and HIV-negative controls. A decreased RBD-binding antibody response than HCWs was also observed in PLWH with CD4 T-cell 200-500/mm^{3}, whereas immune response elicited in PLWH with a CD4 T-cell >500/mm^{}3 was comparable to HIV-negative population

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR <0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted <4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (<10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR>6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS <50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR<0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore