130 research outputs found

    The Availability of a Recombinant Anti-SNAP Antibody in VHH Format Amplifies the Application Flexibility of SNAP-Tagged Proteins

    Get PDF
    Antibodies are indispensable reagents in basic research, and those raised against tags constitute a useful tool for the evaluation of the biochemistry and biology of novel proteins. In this paper, we describe the isolation and characterization of a single-domain recombinant antibody (VHH) specific for the SNAP-tag, using Twist2 as a test-protein. The antibody was efficient in western blot, immunoprecipitation, immunopurification, and immunofluorescence. The sequence corresponding to the anti-SNAP has been subcloned for large-scale expression in vectors that allow its fusion to either a 6xHis-tag or the Fc domain of rabbit IgG2 taking advantage of a new plasmid that was specifically designed for VHH antibodies. The two different fusion antibodies were compared in immunopurification and immunofluorescence experiments, and the recombinant protein SNAP-Twist2 was accurately identified by the anti-SNAP Fc-VHH construct in the nuclear/nucleolar subcellular compartment. Furthermore, such localization was confirmed by direct Twist2 identification by means of anti-Twisit2 VHH antibodies recovered after panning of the same naïve phage display library used to isolate the anti-SNAP binders. Our successful localization of Twist2 protein using the SNAP-tag-based approach and the anti-Twist2-specific recombinant single-domain antibodies opens new research possibilities in this field

    Role of Caspases, Bid, and p53 in the Apoptotic Response Triggered by Histone Deacetylase Inhibitors Trichostatin-A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA)

    Get PDF
    Histone deacetylase activity is potently inhibited by hydroaximc acid derivatives such as suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). These inhibitors specifically induce differentiation/apoptosis of transformed cells in vitro and suppress tumor growth in vivo. Because of its low toxicity, SAHA is currently evaluated in clinical trials for the treatment of cancer. SAHA and TSA induce apoptosis, which is characterized by mitochondrial stress, but so far, the critical elements of this apoptotic program remain poorly defined. To characterize in more detail this apoptotic program, we used human cell lines containing alterations in important elements of apoptotic response such as: p53, Bcl-2, caspase-9, and caspase-3. We demonstrate that caspase-9 is critical for apoptosis induced by SAHA and TSA and that efficient proteolytic activation of caspase-2, caspase-8, and caspase-7 strictly depends on caspase-9. Bcl-2 efficiently antagonizes cytochrome c release and apoptosis in response to both histone deacetylase inhibitors. We provide evidences that translocation into the mitochondria of the Bcl-2 family member Bid depends on caspase-9 and that this translocation is a late event during TSA-induced apoptosis. We also demonstrate that the susceptibility to TSA- and SAHA-induced cell death is regulated by p53

    Toward a better definition of EPCAM deletions in Lynch Syndrome: Report of new variants in Italy and the associated molecular phenotype

    Get PDF
    BackgroundInherited epimutations of Mismatch Repair (MMR) genes are responsible for Lynch Syndrome (LS) in a small, but well defined, subset of patients. Methylation of the MSH2 promoter consequent to the deletion of the upstream EPCAM gene is found in about 1%-3% of the LS patients and represents a classical secondary, constitutional and tissue-specific epimutation. Several different EPCAM deletions have been reported worldwide, for the most part representing private variants caused by an Alu-mediated recombination.Methods712 patients with suspected LS were tested for MMR mutation in our Institute. EPCAM deletions were detected by multiplex ligation-dependent probe amplification (MLPA) and then defined by Long-Range polymerase chain reaction (PCR)/Sanger sequencing. A comprehensive molecular characterization of colorectal cancer (CRC) tissues was carried out by immunohistochemistry of MMR proteins, Microsatellite Instability (MSI) assay, methylation specific MLPA and transcript analyses. In addition, somatic deletions and/or variants were investigated by MLPA and next generation sequencing (NGS).ResultsAn EPCAM deletion was found in five unrelated probands in Italy: variants c.556-490_*8438del and c.858+1193_*5826del are novel; c.859-1430_*2033del and c.859-670_*530del were previously reported. All probands were affected by CRC at young age; tumors showed MSI and abnormal MSH2/MSH6 proteins expression. MSH2 promoter methylation, as well as aberrant in-frame or out-of-frame EPCAM/MSH2 fusion transcripts, were detected in CRCs and normal mucosae.ConclusionAn EPCAM deletion was the causative variant in about 2% of our institutional series of 224 LS patients, consistent with previously estimated frequencies. Early age and multiple CRCs was the main clinical feature of this subset of patients

    The co-existence of transcriptional activator and transcriptional repressor MEF2 complexes influences tumor aggressiveness

    Get PDF
    The contribution of MEF2 TFs to the tumorigenic process is still mysterious. Here we clarify that MEF2 can support both pro-oncogenic or tumor suppressive activities depending on the interaction with co-activators or co-repressors partners. Through these interactions MEF2 supervise histone modifications associated with gene activation/repression, such as H3K4 methylation and H3K27 acetylation. Critical switches for the generation of a MEF2 repressive environment are class IIa HDACs. In leiomyosarcomas (LMS), this two-faced trait of MEF2 is relevant for tumor aggressiveness. Class IIa HDACs are overexpressed in 22% of LMS, where high levels of MEF2, HDAC4 and HDAC9 inversely correlate with overall survival. The knock out of HDAC9 suppresses the transformed phenotype of LMS cells, by restoring the transcriptional proficiency of some MEF2-target loci. HDAC9 coordinates also the demethylation of H3K4me3 at the promoters of MEF2-target genes. Moreover, we show that class IIa HDACs do not bind all the regulative elements bound by MEF2. Hence, in a cell MEF2-target genes actively transcribed and strongly repressed can coexist. However, these repressed MEF2-targets are poised in terms of chromatin signature. Overall our results candidate class IIa HDACs and HDAC9 in particular, as druggable targets for a therapeutic intervention in LMS

    Low-dose radiotherapy in diffuse large B-cell lymphoma

    Get PDF
    Low-dose radiotherapy (LDRT) given in 2 x 2 Gy is a highly effective and safe treatment for palliation of indolent lymphomas. Otherwise, very little regarding the use of LDRT for diffuse large B-cell lymphoma (DLBCL) has been investigated. We designed a phase 2 trial of LDRT in patients with DLBCL with indication for palliative radiation. Low-dose radiotherapy was administered on symptomatic areas only. Clinical response was assessed 21 days after LDRT and defined as reduction >50% of maximum diameter of the radiated lesions. Quality of life was scored by the European Organisation for Research and Treatment of Cancer QLQ-C30 questionnaire. Tumor subtype (germinal center B-cell type versus activated B-cell type) and the presence of TP53 mutations in pathologic specimens of the target lesion were also evaluated. Twenty-three of twentyfive radiated patients were evaluable for response. and 2 died of disease before the visit at 21 days. The overall response rate was 70% (16 of 23 patients), with 7 complete responses and 9 partial responses (mean duration of response. 6 months; range, 1-39 months). Fifteen patients answered to the QLQ-C30 questionnaires, and an improved quality of life was documented in 9 cases. TP53 mutations were detected in 2 of 6 (33%) nonresponders and in none of the responders (P = .12). Germinal center B-cell type responded better than activated B-cell type (response rate was 83% and 29%, respectively, P = .01). These findings indicate that LDRT is effective for palliation in patients with DLBC

    A Proinflammatory Cytokine Inhibits P53 Tumor Suppressor Activity

    Get PDF
    p53 has a key role in the negative regulation of cell proliferation, in the maintenance of genomic stability, and in the suppression of transformation and tumorigenesis. To identify novel regulators of p53, we undertook two functional screens to isolate genes which bypassed either p53-mediated growth arrest or apoptosis. In both screens, we isolated cDNAs encoding macrophage migration inhibitory factor (MIF), a cytokine that was shown previously to exert both local and systemic proinflammatory activities. Treatment with MIF overcame p53 activity in three different biological assays, and suppressed its activity as a transcriptional activator. The observation that a proinflammatory cytokine, MIF, is capable of functionally inactivating a tumor suppressor, p53, may provide a link between inflammation and tumorigenesis

    Tracking of the origin of recurrent mutations of the BRCA1 and BRCA2 genes in the North-East of Italy and improved mutation analysis strategy

    Get PDF
    14noopenopenCini, Giulia; Mezzavilla, Massimo; Della Puppa, Lara; Cupelli, Elisa; Fornasin, Alessio; D'Elia, Angela Valentina; Dolcetti, Riccardo; Damante, Giuseppe; Bertok, Sara; Miolo, Gianmaria; Maestro, Roberta; de Paoli, Paolo; Amoroso, Antonio; Viel, AlessandraCini, Giulia; Mezzavilla, Massimo; Della Puppa, Lara; Cupelli, Elisa; Fornasin, Alessio; D'Elia, Angela Valentina; Dolcetti, Riccardo; Damante, Giuseppe; Bertok, Sara; Miolo, Gianmaria; Maestro, Roberta; de Paoli, Paolo; Amoroso, Antonio; Viel, Alessandr

    GSK-3 as potential target for therapeutic intervention in cancer

    Get PDF
    The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others
    corecore