776 research outputs found

    Recent history and response characteristics of Wachapreague Inlet, Virginia : Final report

    Get PDF
    Wachapreague Inlet, a large downdrift offset inlet in the barrier island complex of the mid-Atlantic coast (Delmarva peninsula), was studied during the period 1971-1974. The inlet channel width is bout 500 m and the throat cross-sectional is about 4,500 m2 • The inlet channel is about 3 km in length, approximately one-half of which is within the well-developed horseshoe shaped ebb delta complex. The maximum channel depth is 20 rn which occurs at the throat. Elements of the study included: (1) the inlet morphornetric history (120 years), (2) assessment of surficial and sub-bottom sediments within the inlet complex, (3) determination of the distribution of tidal flows within the inlet channel, (4) determination of the zone of influence of inlet hydraulic currents along the face of the updrift barrier island and (5) the determination of the response of the channel cross-sectional area to short-term variations in wave activity and tidal prisms. (more...

    Purification and Characterization of meta-Cresol Purple for Spectrophotometric Seawater pH Measurements

    Get PDF
    Spectrophotometric procedures allow rapid and precise measurements of the pH of natural waters. However, impurities in the acid–base indicators used in these analyses can significantly affect measurement accuracy. This work describes HPLC procedures for purifying one such indicator, meta-cresol purple (mCP), and reports mCP physical–chemical characteristics (thermodynamic equilibrium constants and visible-light absorbances) over a range of temperature (T) and salinity (S). Using pure mCP, seawater pH on the total hydrogen ion concentration scale (pHT) can be expressed in terms of measured mCP absorbance ratios (R = λ2A/λ1A) as follows:where −log(K2Te2) = a + (b/T) + c ln T – dT; a = −246.64209 + 0.315971S + 2.8855 × 10–4S2; b = 7229.23864 – 7.098137S – 0.057034S2; c = 44.493382 – 0.052711S; d = 0.0781344; and mCP molar absorbance ratios (ei) are expressed as e1 = −0.007762 + 4.5174 × 10–5T and e3/e2 = −0.020813 + 2.60262 × 10–4T + 1.0436 × 10–4 (S – 35). The mCP absorbances, λ1A and λ2A, used to calculate R are measured at wavelengths (λ) of 434 and 578 nm. This characterization is appropriate for 278.15 ≤ T ≤ 308.15 and 20 ≤ S ≤ 40

    Spectrophotometric Calibration of pH Electrodes in Seawater Using Purified m-Cresol Purple

    Get PDF
    This work examines the use of purified meta-cresol purple (mCP) for direct spectrophotometric calibration of glass pH electrodes in seawater. The procedures used in this investigation allow for simple, inexpensive electrode calibrations over salinities of 20–40 and temperatures of 278.15–308.15 K without preparation of synthetic Tris seawater buffers. The optimal pH range is ∼7.0–8.1. Spectrophotometric calibrations enable straightforward, quantitative distinctions between Nernstian and non-Nernstian electrode behavior. For the electrodes examined in this study, both types of behavior were observed. Furthermore, calibrations performed in natural seawater allow direct determination of the influence of salinity on electrode performance. The procedures developed in this study account for salinity-induced variations in liquid junction potentials that, if not taken into account, would create pH inconsistencies of 0.028 over a 10-unit change in salinity. Spectrophotometric calibration can also be used to expeditiously determine the intercept potential (i.e., the potential corresponding to pH 0) of an electrode that has reliably demonstrated Nernstian behavior. Titrations to ascertain Nernstian behavior and salinity effects can be undertaken relatively infrequently (∼weekly to monthly). One-point determinations of intercept potential should be undertaken frequently (∼daily) to monitor for stable electrode behavior and ensure accurate potentiometric pH determinations

    Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation

    Get PDF
    Producción CientíficaF-actin polymerization following engagement of the T cell receptor (TCR) is dependent on WASP and is critical for T cell activation. The link between TCR and WASP is not fully understood. In resting cells, WASP exists in a complex with WIP, which inhibits its activation by Cdc42. We show that the adaptor protein CrkL binds directly to WIP. Further, TCR ligation results in the formation of a ZAP-70-CrkL-WIP-WASP complex, which is recruited to lipid rafts and the immunological synapse. TCR engagement also causes PKCtheta-dependent phosphorylation of WIP, causing the disengagement of WASP from the WIP-WASP complex, thereby releasing it from WIP inhibition. These results suggest that the ZAP-70-CrkL-WIP pathway and PKCtheta link TCR to WASP activation

    WAVI.jl: Ice Sheet Modelling in Julia

    Get PDF
    Ice sheet models are used to improve our understanding of the past, present, and future evolution of ice sheets. To do so, they solve the equations describing the flow of ice when forced by other climate elements, particularly the atmosphere and oceans. We present WAVI.jl, an ice sheet model written in Julia. WAVI.jl is designed to make ice sheet modelling more accessible to beginners and low-level users, whilst including sufficient detail to be used for addressing cutting-edge research questions

    Book Reviews

    Get PDF

    Multiscale modelling of vascular tumour growth in 3D: the roles of domain size & boundary condition

    Get PDF
    We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumour's growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumour's response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour

    High-resolution NMR studies of structure and dynamics of human ERp27 indicate extensive interdomain flexibility

    Get PDF
    ERp27 (endoplasmic reticulum protein 27.7 kDa) is a homologue of PDI (protein disulfide-isomerase) localized to the endoplasmic reticulum. ERp27 is predicted to consist of two thioredoxinfold domains homologous with the non-catalytic b and b domains of PDI. The structure in solution of the N-terminal blike domain of ERp27 was solved using high-resolution NMR data. The structure confirms that it has the thioredoxin fold and that ERp27 is a member of the PDI family. 15N-NMR relaxation data were obtained and ModelFree analysis highlighted limited exchange contributions and slow internal motions, and indicated that the domain has an average order parameter S 2 of 0.79. Comparison of the single-domain structure determined in the present study with the equivalent domain within fulllength ERp27, determined independently by X-ray diffraction, indicated very close agreement. The domain interface inferred from NMR data in solution was much more extensive than that observed in the X-ray structure, suggesting that the domains flex independently and that crystallization selects one specific interdomain orientation. This led us to apply a new rapid method to simulate the flexibility of the full-length protein, establishing that the domains show considerable freedom to flex (tilt and twist) about the interdomain linker, consistent with the NMR data

    Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment

    Get PDF
    In order to understand the contribution of geogenic phosphorus to lake eutrophication, we have investigated the rate and extent of fluorapatite dissolution in the presence of two common soil bacteria (Pantoea agglomerans and Bacillus megaterium) at T = 25 °C for 26 days. The release of calcium (Ca), phosphorus (P), and rare earth elements (REE) under biotic and abiotic conditions was compared to investigate the effect of microorganism on apatite dissolution. The release of Ca and P was enhanced under the influence of bacteria. Apatite dissolution rates obtained from solution Ca concentration in the biotic reactors increased above error compared with abiotic controls. Chemical analysis of biomass showed that bacteria scavenged Ca, P, and REE during their growth, which lowered their fluid concentrations, leading to apparent lower release rates. The temporal evolution of pH in the reactors reflected the balance of apatite weathering, solution reactions, bacterial metabolism, and potentially secondary precipitation, which was implied in the variety of REE patterns in the biotic and abiotic reactors. Light rare earth elements (LREE) were preferentially adsorbed to cell surfaces, whereas heavy rare earth elements (HREE) were retained in the fluid phase. Decoupling of LREE and HREE could possibly be due to preferential release of HREE from apatite or selective secondary precipitation of LREE enriched phosphates, especially in the presence of bacteria. When corrected for intracellular concentrations, both biotic reactors showed high P and REE release compared with the abiotic control. We speculate that lack of this correction explains the conflicting findings about the role of bacteria in mineral weathering rates. The observation that bacteria enhance the release rate of P and REE from apatite could account for some of the phosphorus burden and metal pollution in aquatic environments

    Pennsylvania Folklife Vol. 30, No. 3

    Get PDF
    • The Good Life on Grandfather\u27s Farm • The Folklore of Local History • Pennsylvania-Palatinate Informal Folk Cultural Exchanges • Maria Assunta: Berwick\u27s Italian Religious Festival • Aldes un Neies / Old & Newhttps://digitalcommons.ursinus.edu/pafolklifemag/1091/thumbnail.jp
    corecore