480 research outputs found

    Active Management of Flap-Edge Trailing Vortices

    Get PDF
    The vortex hazard produced by large airliners and increasingly larger airliners entering service, combined with projected rapid increases in the demand for air transportation, is expected to act as a major impediment to increased air traffic capacity. Significant reduction in the vortex hazard is possible, however, by employing active vortex alleviation techniques that reduce the wake severity by dynamically modifying its vortex characteristics, providing that the techniques do not degrade performance or compromise safety and ride quality. With this as background, a series of experiments were performed, initially at NASA Langley Research Center and subsequently at the Berlin University of Technology in collaboration with the German Aerospace Center. The investigations demonstrated the basic mechanism for managing trailing vortices using retrofitted devices that are decoupled from conventional control surfaces. The basic premise for managing vortices advanced here is rooted in the erstwhile forgotten hypothesis of Albert Betz, as extended and verified ingeniously by Coleman duPont Donaldson and his collaborators. Using these devices, vortices may be perturbed at arbitrarily long wavelengths down to wavelengths less than a typical airliner wingspan and the oscillatory loads on the wings, and hence the vehicle, are small. Significant flexibility in the specific device has been demonstrated using local passive and active separation control as well as local circulation control via Gurney flaps. The method is now in a position to be tested in a wind tunnel with a longer test section on a scaled airliner configuration. Alternatively, the method can be tested directly in a towing tank, on a model aircraft, a light aircraft or a full-scale airliner. The authors believed that this method will have significant appeal from an industry perspective due to its retrofit potential with little to no impact on cruise (devices tucked away in the cove or retracted); low operating power requirements; small lift oscillations when deployed in a time-dependent manner; and significant flexibility with respect to the specific devices selected

    Isolated angioedema of the bowel due to C1 esterase inhibitor deficiency: a case report and review of literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report a rare, classic case of isolated angioedema of the bowel due to C1-esterase inhibitor deficiency. It is a rare presentation and very few cases have been reported worldwide. Angioedema has been classified into three categories.</p> <p>Case presentation</p> <p>A 66-year-old Caucasian man presented with a ten-month history of episodic severe cramping abdominal pain, associated with loose stools. A colonoscopy performed during an acute attack revealed nonspecific colitis. Computed tomography of the abdomen performed at the same time showed a thickened small bowel and ascending colon with a moderate amount of free fluid in the abdomen. Levels of C4 (< 8 mg/dL; reference range 15 to 50 mg/dL), CH50 (< 10 U/mL; reference range 29 to 45 U/ml) and C1 inhibitor (< 4 mg/dL; reference range 14 to 30 mg/dL) were all low, supporting a diagnosis of acquired angioedema with isolated bowel involvement. Our patient's symptoms improved with antihistamine and supportive treatment.</p> <p>Conclusion</p> <p>In addition to a detailed comprehensive medical history, laboratory data and imaging studies are required to confirm a diagnosis of angioedema due to C1 esterase inhibitor deficiency.</p

    Fine tuning of the E. coli NusB:NusE complex affinity to BoxA RNA is required for processive antitermination

    Get PDF
    Phage λ propagation in Escherichia coli host cells requires transcription antitermination on the λ chromosome mediated by λN protein and four host Nus factors, NusA, B, E (ribosomal S10) and G. Interaction of E. coli NusB:NusE heterodimer with the single stranded BoxA motif of λnutL or λnutR RNA is crucial for this reaction. Similarly, binding of NusB:NusE to a BoxA motif is essential to suppress transcription termination in the ribosomal RNA (rrn) operons. We used fluorescence anisotropy to measure the binding properties of NusB and of NusB:NusE heterodimer to BoxA-containing RNAs differing in length and sequence. Our results demonstrate that BoxA is necessary and sufficient for binding. We also studied the gain-of-function D118N NusB mutant that allows λ growth in nusA1 or nusE71 mutants. In vivo λ burst-size determinations, CD thermal unfolding measurements and X-ray crystallography of this as well as various other NusB D118 mutants showed the importance of size and polarity of amino acid 118 for RNA binding and other interactions. Our work suggests that the affinity of the NusB:NusE complex to BoxA RNA is precisely tuned to maximize control of transcription termination
    corecore