93 research outputs found

    Charged and strange hadron elliptic flow in Cu+Cu collisions at sNN\sqrt{s_{NN}} = 62.4 and 200 GeV

    Get PDF
    We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons KS0K_{S}^{0}, Λ\Lambda, Ξ\Xi, ϕ\phi in the midrapidity region eta<1.0|eta|<1.0. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, η<1.0|\eta|<1.0, with those at forward rapidity, 2.5<η<4.02.5<|\eta|<4.0. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that v2v_{2}(pTp_{T}) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, pT<2GeV/cp_T<2GeV/c, v2v_{2} scales with transverse kinetic energy, mTmm_{T}-m, and (ii) at intermediate pTp_T, 2<pT<4GeV/c2<p_T<4GeV/c, it scales with the number of constituent quarks, nqn_q. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v2v_{2}(pTp_{T}) for KS0K_{S}^{0} and Λ\Lambda. Eccentricity scaled v2v_2 values, v2/ϵv_{2}/\epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows v2/ϵv_{2}/\epsilon depend on the system size, number of participants NpartN_{part}. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.Comment: 18 pages, 14 figure

    Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

    Get PDF
    Charged-particle spectra associated with direct photon (γdir\gamma_{dir} ) and π0\pi^0 are measured in pp+pp and Au+Au collisions at center-of-mass energy sNN=200\sqrt{s_{_{NN}}}=200 GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between γdir\gamma_{dir} and π0\pi^0. Assuming no associated charged particles in the γdir\gamma_{dir} direction (near side) and small contribution from fragmentation photons (γfrag\gamma_{frag}), the associated charged-particle yields opposite to γdir\gamma_{dir} (away side) are extracted. At mid-rapidity (η<0.9|\eta|<0.9) in central Au+Au collisions, charged-particle yields associated with γdir\gamma_{dir} and π0\pi^0 at high transverse momentum (8<pTtrig<168< p_{T}^{trig}<16 GeV/cc) are suppressed by a factor of 3-5 compared with pp + pp collisions. The observed suppression of the associated charged particles, in the kinematic range η<1|\eta|<1 and 3<pTassoc<163< p_{T}^{assoc} < 16 GeV/cc, is similar for γdir\gamma_{dir} and π0\pi^0, and independent of the γdir\gamma_{dir} energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.Comment: submitted to Phys. Rev. Lett, 6 pages, 4 figure

    Enhanced strange baryon production in Au+Au collisions compared to p+p at sqrts = 200 GeV

    Get PDF
    We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.Comment: 7 pages, 4 figures. Printed in PR

    Identified high-pTp_{T} spectra in Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 GeV

    Get PDF
    We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3<pTp_{T}<10 GeV/c) from Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-pTp_{T} and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.Comment: Submitted to Phys. Rev. C, 9 pages, 5 figure

    Measurements of ϕ\phi meson production in relativistic heavy-ion collisions at RHIC

    Get PDF
    We present results for the measurement of ϕ\phi meson production via its charged kaon decay channel ϕK+K\phi \to K^+K^- in Au+Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4, 130, and 200 GeV, and in p+pp+p and dd+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (y<0.5|y|<0.5) ϕ\phi meson transverse momentum (pTp_{T}) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the pTp_{T} spectra from p+pp+p, dd+Au and peripheral Au+Au collisions show power-law tails at intermediate and high pTp_{T} and are described better by Levy distributions. The constant ϕ/K\phi/K^- yield ratio vs beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for ϕ\phi production at RHIC. The Ω/ϕ\Omega/\phi yield ratio as a function of pTp_{T} is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher transverse momenta. The measured nuclear modification factor, RdAuR_{dAu}, for the ϕ\phi meson increases above unity at intermediate pTp_{T}, similar to that for pions and protons, while RAAR_{AA} is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both RcpR_{cp} and v2v_{2} for the ϕ\phi meson with respect to other hadrons in Au+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV at intermediate pTp_{T} is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate pTp_{T} region at RHIC.Comment: 22 pages, 21 figures, 4 table

    Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

    Get PDF
    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review C

    Strangelet Search in AuAu Collisions at 200 GeV

    Get PDF
    We have searched for strangelets in a triggered sample of 61 million central (top 4%) Au+Au collisions at \sNN = 200 GeV near beam rapidities at the STAR detector. We have sensitivity to metastable strangelets with lifetimes of order 0.1ns\geq 0.1 ns, in contrast to limits over ten times longer in AGS studies and longer still at the SPS. Upper limits of a few 10^{-6} to 10^{-7} per central Au+Au collision are set for strangelets with mass >30{}^{>}_{\sim}30 GeV/c^{2}.Comment: As publishe

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
    corecore