19 research outputs found

    7-Bromo-4b-methyl-7,8-dihydro-4bH-9-thia-8a-aza­fluorene 9,9-dioxide

    Get PDF
    The title compound, C12H12BrNO2S, was isolated after direct irradiation (hν 350 nm, hexa­ne) of a mixture of stereoisomeric sulfonamides containing a vicinal dibromide and a conjugated diene. This product is one of a group of substrates that has contributed to our understanding of the photoreactivity patterns of non-bridged sulfonamides. The crystal structure was determined from a non-merohedrally twinned data set, where the twin law corresponded to a 180° rotation about the a* axis. The minor twin component refined to a value of 0.176 (3). The conformation of the mol­ecule is planar at one end, as the benzene ring and the adjacent fused five-membered ring are coplanar, and U-shaped at the other end, where the five-membered ring is fused to the heterocyclic six-membered ring containing an allyl bromide group

    (+)-(1S,5R,10S)-11,11-Dimeth­yl-4-oxa­tricyclo­[8.4.0.01,5]tetra­deca­ne-3,12-dione

    Get PDF
    The title compound, C15H22O3, was prepared via amino-acid-promoted Robinson annulation followed by tandem Pd/C-mediated hydrogenation and oxidative cyclization. This product was instrumental in determining the feasibility of a stereocontrolled hydrogenation in which the directing hydroxyl group is adjacent to the 6–7-ring network and its olefinic component. The asymmetric unit consists of a single mol­ecule with normal geometric parameters. The absolute configuration was assigned based on the known enanti­omeric prescursor. Inter­molecular C—H⋯O inter­actions link each mol­ecule with four neighboring mol­ecules

    Stratigraphic evidence of two historical tsunamis on the semi-arid coast of north-central Chile

    Get PDF
    On September 16, 2015, a Mw 8.3 earthquake struck the north-central Chile coast, triggering a tsunami observed along 500 km of coastline, between Huasco (28.5°S) and San Antonio (33.5°S). This tsunami provided a unique opportunity to examine the nature of tsunami deposits in a semi-arid, siliciclastic environment where stratigraphic and sedimentological records of past tsunamis are difficult to distinguish. To improve our ability to identify such evidence, we targeted one of the few low-energy, organic-rich depositional environments in north-central Chile: Pachingo marsh in Tongoy Bay (30.3°S).We found sedimentary evidence of the 2015 and one previous tsunami as tabular sand sheets. Both deposits are composed of poorly to moderately sorted, gray-brown, fine-to medium-grained sand and are distinct from underlying and overlying organic-rich silt. Both sand beds thin (from ∼20 cm to \u3c1 \u3ecm) and fine landward, and show normal grading. The older sand bed is thicker and extends over 125 m further inland than the 2015 tsunami deposit. To model the relative size of the tsunamis that deposited each sand bed, we employed tsunami flow inversion. Our results show that the older sand bed was produced by higher flow speeds and depths than those in 2015. Anthropogenic evidence along with 137Cs and 210Pb dating constrains the age of the older tsunami to the last ∼110 years. We suggest that the older sand bed was deposited by the large tsunami in 1922 CE sourced to the north of our study site. This deposit represents the first geologic evidence of a pre-2015 tsunami along the semi-arid north-central Chile coast and highlights the current and continuing tsunami hazard in the region

    Geppetto: a reusable modular open platform for exploring neuroscience data and models

    Get PDF
    Geppetto is an open-source platform that provides generic middleware infrastructure for building both online and desktop tools for visualizing neuroscience models and data and managing simulations. Geppetto underpins a number of neuroscience applications, including Open Source Brain (OSB), Virtual Fly Brain (VFB), NEURON-UI and NetPyNE-UI. OSB is used by researchers to create and visualize computational neuroscience models described in NeuroML and simulate them through the browser. VFB is the reference hub for Drosophila melanogaster neural anatomy and imaging data including neuropil, segmented neurons, microscopy stacks and gene expression pattern data. Geppetto is also being used to build a new user interface for NEURON, a widely used neuronal simulation environment, and for NetPyNE, a Python package for network modelling using NEURON. Geppetto defines domain agnostic abstractions used by all these applications to represent their models and data and offers a set of modules and components to integrate, visualize and control simulations in a highly accessible way. The platform comprises a backend which can connect to external data sources, model repositories and simulators together with a highly customizable frontend.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 1

    Get PDF

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore