6,476 research outputs found
Potential health impacts of heavy metals on HIV-infected population in USA.
Noninfectious comorbidities such as cardiovascular diseases have become increasingly prevalent and occur earlier in life in persons with HIV infection. Despite the emerging body of literature linking environmental exposures to chronic disease outcomes in the general population, the impacts of environmental exposures have received little attention in HIV-infected population. The aim of this study is to investigate whether individuals living with HIV have elevated prevalence of heavy metals compared to non-HIV infected individuals in United States. We used the National Health and Nutrition Examination Survey (NHANES) 2003-2010 to compare exposures to heavy metals including cadmium, lead, and total mercury in HIV infected and non-HIV infected subjects. In this cross-sectional study, we found that HIV-infected individuals had higher concentrations of all heavy metals than the non-HIV infected group. In a multivariate linear regression model, HIV status was significantly associated with increased blood cadmium (p=0.03) after adjusting for age, sex, race, education, poverty income ratio, and smoking. However, HIV status was not statistically associated with lead or mercury levels after adjusting for the same covariates. Our findings suggest that HIV-infected patients might be significantly more exposed to cadmium compared to non-HIV infected individuals which could contribute to higher prevalence of chronic diseases among HIV-infected subjects. Further research is warranted to identify sources of exposure and to understand more about specific health outcomes
Z-Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity
The mechanism and origins of Z-selectivity in olefin metathesis with chelated Ru catalysts were explored using density functional theory. The olefin approaches from the âsideâ position of the chelated Ru catalysts, in contrast to reactions with previous unchelated Ru catalysts that favor the bottom-bound pathway. Steric repulsions between the substituents on the olefin and the N-substituent on the N-heterocyclic carbene ligand lead to highly selective formation of the Z product
Post-drought decline of the Amazon carbon sink
Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.3â±â0.2 (95% CI)âPgCâyrâ1 after the 2005 mega-drought, which continued persistently over the next 3 years (2005â2008). The changes in forest structure, captured by average LiDAR forest height and converted to above ground biomass carbon density, show an average loss of 2.35â±â1.80âMgCâhaâ1 a year after (2006) in the epicenter of the drought. With more frequent droughts expected in future, forests of Amazon may lose their role as a robust sink of carbon, leading to a significant positive climate feedback and exacerbating warming trends.The research was partially supported by NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology and partial funding to the UCLA Institute of Environment and Sustainability from previous National Aeronautics and Space Administration and National Science Foundation grants. The authors thank NSIDC, BYU, USGS, and NASA Land Processes Distributed Active Archive Center (LP DAAC) for making their data available. (NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology)Published versio
Electron Doping of a Double Perovskite Flat-band System
Electronic structure calculations indicate that the Sr2FeSbO6 double
perovskite has a flat-band set just above the Fermi level that includes
contributions from ordinary sub-bands with weak kinetic electron hopping plus a
flat sub-band that can be attributed to the lattice geometry and orbital
interference. To place the Fermi energy in that flat band, electron doped
samples with formulas Sr2-xLaxFeSbO6 (0 < x < 0.3) were synthesized and their
magnetism and ambient temperature crystal structures determined by
high-resolution synchrotron X-ray powder diffraction. All materials appear to
display an antiferromagnetic-like maximum in the magnetic susceptibility, but
the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on
electron doping. Which of the three sub-bands or combinations is responsible
for the behavior has not been determined.Comment: 31 pages, 8 figure
A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination
By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks
Recommended from our members
Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics.
Community assembly of crop-associated fungi is thought to be strongly influenced by deterministic selection exerted by the plant host, rather than stochastic processes. Here we use a simple, sorghum system with abundant sampling to show that stochastic forces (drift or stochastic dispersal) act on fungal community assembly in leaves and roots early in host development and when sorghum is drought stressed, conditions when mycobiomes are small. Unexpectedly, we find no signal for stochasticity when drought stress is relieved, likely due to renewed selection by the host. In our experimental system, the host compartment exerts the strongest effects on mycobiome assembly, followed by the timing of plant development and lastly by plant genotype. Using a dissimilarity-overlap approach, we find a universality in the forces of community assembly of the mycobiomes of the different sorghum compartments and in functional guilds of fungi
Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight
FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development
Phenotype of p53 wild-type epitope-specific T cells in the circulation of patients with head and neck cancer
CD8(+) cytotoxic T-cell (CTL) specific for non-mutated, wild type (wt) sequence p53 peptides derived from wt or mutant p53 molecules expressed in head and neck squamous cell carcinomas (HNSCC) have been detected in the circulation of patients with this disease. The frequency and differentiation/maturation phenotypes of these anti-tumor specific CTL can reflect the host's immunologic response. Therefore, we investigated the frequency and phenotypes of wt sequence p53 peptide-specific CTL in patients with HNSCC (n = 33) by flow cytometric analysis using HLA-A*0201 tetrameric peptides (tet) complexed with the wt sequence p53(264-272) or p53(149-157) peptide and co-staining with phenotypic markers. One main finding was that increasing frequencies of tet(+) CD8(+) T cells in patients' circulation correlated with increased frequencies of inactive naive tet(+) cells, while those with effector memory and terminally differentiated phenotypes, which are associated with positive anti-tumor immune responses, decreased. We also found that the frequency of circulating tet(+) CD8(+) T cells negatively correlated with p53 expression in tumor tissues and tumor stage. Our findings support further clinical-based investigations to define the frequencies and phenotypes of wt sequence p53 peptide-specific CD8(+) T cells to predict disease severity, enhance selection of patients for inclusion in vaccination trials and highlight prerequisites to enhance immune susceptibility by activation of inactive naive tet+ T cells and/or enhancing circulating effector T cell activity by checkpoint blockage
Nematic Fluctuations in Iron-Oxychalcogenide Mott Insulators
Nematic fluctuations occur in a wide range of physical systems from liquid
crystals to biological molecules to solids such as exotic magnets, cuprates and
iron-based high- superconductors. Nematic fluctuations are thought to be
closely linked to the formation of Cooper-pairs in iron-based superconductors.
It is unclear whether the anisotropy inherent in this nematicity arises from
electronic spin or orbital degrees of freedom. We have studied the iron-based
Mott insulators LaOFeO = (S, Se) which are
structurally similar to the iron pnictide superconductors. They are also in
close electronic phase diagram proximity to the iron pnictides. Nuclear
magnetic resonance (NMR) revealed a critical slowing down of nematic
fluctuations as observed by the spin-lattice relaxation rate (). This is
complemented by the observation of a change of electrical field gradient over a
similar temperature range using M\"ossbauer spectroscopy. The neutron pair
distribution function technique applied to the nuclear structure reveals the
presence of local nematic fluctuations over a wide temperature range
while neutron diffraction indicates that global symmetry is preserved.
Theoretical modeling of a geometrically frustrated spin- Heisenberg model
with biquadratic and single-ion anisotropic terms provides the interpretation
of magnetic fluctuations in terms of hidden quadrupolar spin fluctuations.
Nematicity is closely linked to geometrically frustrated magnetism, which
emerges from orbital selectivity. The results highlight orbital order and spin
fluctuations in the emergence of nematicity in Fe-based oxychalcogenides. The
detection of nematic fluctuation within these Mott insulator expands the group
of iron-based materials that show short-range symmetry-breaking
- âŠ