339 research outputs found

    The Chemical Ecology of Benzoxazinoids

    Get PDF
    Benzoxazinoids are specialized metabolites that modulate plant physiology and plant interactions with their environment. In this review, we synthesize their multiple functions and ecological relevance. We first provide an overview of benzoxazinoid biosynthesis and highlight known regulatory elements involved in modulating their production. We then outline the role of benzoxazinoids in plant nutrition, vegetative and reproductive growth, and defense. We further summarize benzoxazinoid response to environmental factors such as temperature, drought, CO2, light, or nutrient levels and emphasize their potential role in tolerating abiotic stresses. Finally, we argue that benzoxazinoids act as a strong selective force on different trophic levels by shaping the plant interactions with microbes, insect herbivores, and competitor plants. Understanding the pivotal role of benzoxazinoids in plant biology is crucial to apprehend their impact on (agro)ecosystem functioning and diversity

    The Holocene Thermal Maximum in the Greenland Sea and Fram Strait : temporal and spatial variability

    Get PDF
    The Holocene Thermal Maximum (HTM) is a distinct time interval in the early Holocene when strong advection of Atlantic Water to the northern Nordic Seas led to the development of conditions favorable for plankton growth due to limited sea ice coverage. Here we present a synthesis of records from the northern and western part of this area, reaching from the SW Greenland Sea (73°N) to the Yermak Plateau (81°N) and revealing temporal and spatial differences in HTM development. High-resolution radiocarbon dating enables us to constrain the timing of the HTM on (sub)millennial scale resolution. In the Fram Strait and on the Yermak Plateau, rapidly increasing subpolar foraminiferal amounts in the sediments and calculated fluxes indicate the arrival of subsurface warm and saline Atlantic Water at 11-10.5 ka. Depending on the temporal resolution, the records show that the maximum influx was terminated already 2000 years later (9-8 ka), contemporaneous to the short period of maximum sea surface temperatures (cf. Risebrobakken et al., 2011, Paleoceanography v. 26). In the northernmost Greenland Sea, low-resolution records show that the timing may have been similar here. A new submilliennial-scale record from the Vesterisbanken (73°N) in the Greenland Sea, however, reveals a somewhat different picture for this more southern area, affected by the Greenland Gyre. A reduction in annual ice coverage, as indicated by increasing total amounts of planktic foraminifers in the sediment, also occurred between 11 and 10 ka, but the maximum Atlantic Water advection came later (9 ka) and lasted until 6 ka. Apparently, the SW Greenland Sea site records the history of Atlantic Water in the Greenland Gyre that decoupled from the northward flowing Norwegian Atlantic Current/Westspitsbergen Current south of the Fram Strait and supplied relatively high amounts of heat to the subsurface Greenland Sea well into the middle Holocene. At that time, the more northerly sites had already experienced a substantial cooling and an increase in ice coverage, probably induced by a stronger sea ice production in the Arctic Ocean than in the Early Holocene

    Turnover of Benzoxazinoids during the Aerobic Deterioration of Maize Silage (Zea mays).

    Get PDF
    While plant-specialized metabolites can affect mammal health, their fate during the aerobic deterioration of crop silage remains poorly understood. In this study, we investigated the metabolization of benzoxazinoids (BXs) in silages of two maize genotypes (W22 wild type and bx1 mutant line) during aerobic deterioration. In W22 plants, concentrations of the aglucone BXs DIMBOA and HMBOA in silage decreased over time upon air exposure, while concentrations of MBOA and BOA increased. Mutant plants had low levels of BXs, which did not significantly vary over time. Aerobic stability was BX-dependent, as pH and counts of yeasts and molds were higher in W22 compared to that in bx1 silage. The nutrient composition was not affected by BXs. These preliminary results may be used to estimate the amounts of BXs provided to farm animals via silage feeding. However, further research is warranted under different harvest and storage conditions

    Dispersed Crude Oil Induces Dysbiosis In the Red Snapper \u3ci\u3eLutjanus campechanus\u3c/i\u3e External Microbiota

    Get PDF
    The fish external microbiota competitively excludes primary pathogens and prevents the proliferation of opportunists. A shift from healthy microbiota composition, known as dysbiosis, may be triggered by environmental stressors and increases host susceptibility to disease. The Deepwater Horizon (DWH) oil spill was a significant stressor event in the Gulf of Mexico. Despite anecdotal reports of skin lesions on fishes following the oil spill, little information is available on the impact of dispersed oil on the fish external microbiota. In this study, juvenile red snapper (Lutjanus campechanus) were exposed to a chemically enhanced water-accommodated fraction (CEWAF) of Corexit 9500/DWH oil (CEWAF) and/or the bacterial pathogen Vibrio anguillarum in treatments designed to detect changes in and recovery of the external microbiota. In fish chronically exposed to CEWAF, immunoglobulin M (IgM) expression significantly decreased between 2 and 4 weeks of exposure, coinciding with elevated liver total polycyclic aromatic hydrocarbons (PAHs). Dysbiosis was detected on fish chronically exposed to CEWAF compared to seawater controls, and addition of a pathogen challenge altered the final microbiota composition. Dysbiosis was prevented by returning fish to clean seawater for 21 days after 1 week of CEWAF exposure. Four fish exhibited lesions during the trial, all of which were exposed to CEWAF but not all of which were exposed to V. anguillarum. This study indicates that month-long exposure to dispersed oil leads to dysbiosis in the external microbiota. As the microbiota is vital to host health, these effects should be considered when determining the total impacts of pollutants in aquatic ecosystems

    Supervised resistance exercise for women with ovarian cancer who have completed first-line treatment: a pragmatic study

    Get PDF
    Objectives: In ovarian cancer (OC), suboptimal muscle morphology (i.e., low muscle mass and density) is associated with poor clinical outcomes, yet little is known about the effect of interventions aimed at improving these measures. We investigated the effect of resistance exercise after first-line treatment on muscle mass and density, muscle strength and physical function, health-related quality of life (QoL), and pelvic-floor function in advanced-stage OC survivors. Methods: Fifteen OC survivors participated in supervised resistance exercise twice weekly for 12 weeks (in-clinic or by telehealth). Assessments included muscle mass and density (dual-energy X-ray absorptiometry, peripheral quantitative computed tomography), muscle strength (1-repetition maximum [1RM] chest press, 5RM leg press, handgrip strength), physical function (400-m walk, timed up-and-go [TUG]), QoL (QLQ-C30 questionnaire), and self-reported pelvic floor function (Australian Pelvic Floor Questionnaire). Results: The median age was 64 (range 33–72) years, 10 women underwent neoadjuvant chemotherapy and five underwent adjuvant chemotherapy. All participants completed the intervention (median attendance = 92%; range 79–100%). Post-intervention improvements were observed for whole-body lean mass (1.0 ± 1.4 kg, p = 0.015), appendicular lean mass (0.6 ± 0.9 kg, p = 0.013), muscle density (p = 0.011), upper and lower body strength (p ≤ 0.001), 400-m walk (p = 0.001), TUG (p = 0.005), and social and cognitive QoL domains (p = 0.002 and 0.007), with no change to pelvic floor symptoms (p \u3e 0.05). Conclusion: In this study, supervised resistance exercise effectively improved muscle mass and density, muscle strength, and physical functioning without deleterious effects on the pelvic floor. Considering the prognostic value of these outcomes, larger studies are needed to confirm the benefits of resistance exercise in OC supportive care

    Impact of Seasonal and Temperature-Dependent Variation in Root Defense Metabolites on Herbivore Preference in Taraxacum officinale

    Get PDF
    Plants experience seasonal fluctuations in abiotic and biotic factors such as herbivore attack rates. If and how root defense expression co-varies with seasonal fluctuations in abiotic factors and root herbivore attack rates is not well understood. Here, we evaluated seasonal changes in defensive root latex chemistry of Taraxacum officinale plants in the field and correlated the changes with seasonal fluctuations in abiotic factors and damage potential by Melolontha melolontha, a major natural enemy of T. officinale. We then explored the causality and consequences of these relationships under controlled conditions. The concentration of the defensive sesquiterpene lactone taraxinic acid β-D glucopyranosyl ester (TA-G) varied substantially over the year and was most strongly correlated to mean monthly temperature. Both temperature and TA-G levels were correlated with annual fluctuations in potential M. melolontha damage. Under controlled conditions, plants grown under high temperature produced more TA-G and were less attractive for M. melolontha. However, temperature-dependent M. melolontha feeding preferences were not significantly altered in TA-G deficient transgenic lines. Our results suggest that fluctuations in temperature leads to variation in the production of a root defensive metabolites that co-varies with expected attack of a major root herbivore. Temperature-dependent herbivore preference, however, is likely to be modulated by other phenotypic alterations

    New frontiers in belowground ecology for plant protection from root-feeding insects

    Get PDF
    Herbivorous insect pests living in the soil represent a significant challenge to food security given their persistence, the acute damage they cause to plants and the difficulties associated with managing their populations. Ecological research effort into rhizosphere interactions has increased dramatically in the last decade and we are beginning to understand, in particular, the ecology of how plants defend themselves against soil-dwelling pests. In this review, we synthesise information about four key ecological mechanisms occurring in the rhizosphere or surrounding soil that confer plant protection against root herbivores. We focus on root tolerance, root resistance via direct physical and chemical defences, particularly via acquisition of silicon-based plant defences, integration of plant mutualists (microbes and entomopathogenic nematodes, EPNs) and the influence of soil history and feedbacks. Their suitability as management tools, current limitations for their application, and the opportunities for development are evaluated. We identify opportunities for synergy between these aspects of rhizosphere ecology, such as mycorrhizal fungi negatively affecting pests at the root-interface but also increasing plant uptake of silicon, which is also known to reduce herbivory. Finally, we set out research priorities for developing potential novel management strategies

    Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies

    Get PDF
    How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents

    Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field.

    Get PDF
    Plant secondary metabolites that are released into the rhizosphere alter biotic and abiotic soil properties, which in turn affect the performance of other plants. How this type of plant-soil feedback affects agricultural productivity and food quality in the field in the context of crop rotations is unknown. Here, we assessed the performance, yield and food quality of three winter wheat varieties growing in field plots whose soils had been conditioned by either wild type or benzoxazinoid-deficient bx1 maize mutant plants. Following maize cultivation, we detected benzoxazinoid-dependent chemical and microbial fingerprints in the soil. The benzoxazinoid fingerprint was still visible during wheat growth, but the microbial fingerprint was no longer detected. Wheat emergence, tillering, growth, and biomass increased in wild type conditioned soils compared to bx1 mutant conditioned soils. Weed cover was similar between soil conditioning treatments, but insect herbivore abundance decreased in benzoxazinoid-conditioned soils. Wheat yield was increased by over 4% without a reduction in grain quality in benzoxazinoid-conditioned soils. This improvement was directly associated with increased germination and tillering. Taken together, our experiments provide evidence that soil conditioning by plant secondary metabolite producing plants can increase yield via plant-soil feedbacks under agronomically realistic conditions. If this phenomenon holds true across different soils and environments, optimizing root exudation chemistry could be a powerful, genetically tractable strategy to enhance crop yields without additional inputs
    • …
    corecore