63 research outputs found

    Piecing together the problems in diagnosing low-level chromosomal mosaicism

    Get PDF
    Low-level somatic chromosomal mosaicism, which usually arises from post-zygotic errors, is a known cause of several well defined genetic syndromes and has been implicated in various multifactorial diseases. It is, however, not easy to diagnose, as various physical and technical factors complicate its identification

    Somatic Genomic Variations in Early Human Prenatal Development

    Get PDF
    Only 25 to 30% of conceptions result in a live birth. There is mounting evidence that the cause for this low fecundity is an extremely high incidence of chromosomal rearrangements occurring in the cleavage stage embryo. In this review, we gather all recent evidence for an extraordinary degree of mosaicisms in early embryogenesis. The presence of the rearrangements seen in the cleavage stage embryos can explain the origins of the placental mosaicisms seen during chorion villi sampling as well as the chromosomal anomalies seen in early miscarriages. Whereas these rearrangements often lead to implantation failure and early miscarriages, natural selection of the fittest cells in the embryo is the likely mechanism leading to healthy fetuses

    Meiotic errors followed by two parallel postzygotic trisomy rescue events are a frequent cause of constitutional segmental mosaicism

    Get PDF
    Structural copy number variation (CNV) is a frequent cause of human variation and disease. Evidence is mounting that somatic acquired CNVs are prevalent, with mosaicisms of large segmental CNVs in blood found in up to one percent of both the healthy and patient populations. It is generally accepted that such constitutional mosaicisms are derived from postzygotic somatic mutations. However, few studies have tested this assumption. Here we determined the origin of CNVs which coexist with a normal cell line in nine individuals. We show that in 2/9 the CNV originated during meiosis. The existence of two cell lines with 46 chromosomes thus resulted from two parallel trisomy rescue events during postzygotic mitoses

    Inhibition of histone deacetylase 6 (HDAC6) protects against vincristine-induced peripheral neuropathies and inhibits tumor growth

    Get PDF
    As cancer is becoming more and more a chronic disease, a large proportion of patients is confronted with devastating side effects of certain anti-cancer drugs. The most common neurological complications are painful peripheral neuropathies. Chemotherapeutics that interfere with microtubules, including plant-derived vinca-alkaloids such as vincristine, can cause these chemotherapy-induced peripheral neuropathies (CIPN). Available treatments focus on symptom alleviation and pain reduction rather than prevention of the neuropathy. The aim of this study was to investigate the potential of specific histone deacetylase 6 (HDAC6) inhibitors as a preventive therapy for CIPN using multiple rodent models for vincristine-induced peripheral neuropathies (VIPN). HDAC6 inhibition increased the level of acetylated α-tubulin in tissues of rodents undergoing vincristine-based chemotherapy, which correlates to a reduced severity of the neurological symptoms, both at the electrophysiological and the behavioral level. Mechanistically, disturbances in axonal transport of mitochondria is considered as an important contributing factor in the pathophysiology of VIPN. As vincristine interferes with the polymerization of microtubules, we investigated whether disturbances in axonal transport could contribute to VIPN. We observed that increasing α-tubulin acetylation through HDAC6 inhibition restores vincristine-induced defects of axonal transport in cultured dorsal root ganglion neurons. Finally, we assured that HDAC6-inhibition offers neuroprotection without interfering with the anti-cancer efficacy of vincristine using a mouse model for acute lymphoblastic leukemia. Taken together, our results emphasize the therapeutic potential of HDAC6 inhibitors with beneficial effects both on vincristine-induced neurotoxicity, as well as on tumor proliferation. ispartof: Neurobiology of Disease vol:111 pages:59-69 ispartof: location:United States status: publishe

    Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations

    Get PDF
    Background: The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer's disease (AD). Although the actual risk-increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small insertion-deletions of CLU in AD patients, which specifically clustered in the beta-chain domain of CLU. Nonetheless the pathogenic nature of these variants remained unclear. Here we report a novel non-synonymous CLU mutation (p.I360N) in a Belgian Alzheimer patient and have explored the pathogenic nature of this and 10 additional CLU mutations on protein localization and secretion in vitro using immunocytochemistry, immunodetection and ELISAs. Results: Three patient-specific CLU mutations in the beta-chain (p.I303NfsX13, p.R338W and p.I360N) caused an alteration of the subcellular CLU localization and diminished CLU transport through the secretory pathway, indicative of possible degradation mechanisms. For these mutations, significantly reduced CLU intensity was observed in the Golgi while almost all CLU protein was exclusively present in the endoplasmic reticulum. This was further confirmed by diminished CLU secretion in HEK293T and HEK293 FLp-In cell lines. Conclusions: Our data lend further support to the contribution of rare coding CLU mutations in the pathogenesis of neurodegenerative diseases. Functional analyses suggest reduced secretion of the CLU protein as the mode of action for three of the examined CLU mutations. One of those is a frameshift mutation leading to a loss of secreted protein, and the other two mutations are amino acid substitutions in the disulfide bridge region, possibly interfering with heterodimerization of the alpha- and beta-chain of CLU

    Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration

    Get PDF
    Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency < 0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency < 0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology

    Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) inclusions are pathological hallmarks of patients with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Loss of TDP-43 in zebrafish engenders a severe muscle and vascular phenotype with a concomitant elevation of filamin C (FLNC) levels, an observation confirmed in the frontal cortex of FTLD-TDP patients. Here, we aimed to further assess the contribution of FLNC to frontotemporal dementia (FTD) etiology. We conducted a mutational screening of FLNC in a cohort of 529 unrelated Belgian FTD and FTD-ALS patients, and a control cohort of 920 unrelated and age-matched individuals. Additionally we performed an in-depth characterization of FLNC expression levels in FTD patients and a murine FTD model. In total 68 missense variants were identified of which 19 (MAF C) loss-of-function mutation. Increased FLNC levels were, to a lesser extent, also identified in a FLNC p.V831I variant carrier and in FTD patients with the p.R159H mutation in valosin-containing protein (VCP). The GRN-associated increase of FLNC was confirmed in the frontal cortex of aged Grn knockout mice starting at 16-18 months of age. Combined quantitative proteomic and bioinformatic analyses of the frontal cortex of FTD patients possessing elevated FLNC levels, identified multiple altered protein factors involved in accelerated aging, neurodegeneration and synaptogenesis. Our findings further support the involvement of aberrant FLNC expression levels in FTD pathogenesis. Identification of increased FLNC levels in aged Grn mice and impaired pathways related to aging and neurodegeneration, implies a potential role for FLNC in mediating or accelerating the aging process

    NEK1 variants confer susceptibility to amyotrophic lateral sclerosis

    Get PDF
    To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p
    • …
    corecore