3,147 research outputs found

    Predissociation mechanism for the lowest ÂčΠu states of N₂

    No full text
    Separate coupled-channel Schrödinger-equation (CSE) models of the interacting ÂčΠu (b,c,o) and ³Πu (C,Câ€Č) states of N₂ are combined, through the inclusion of spin-orbit interactions, to produce a five-channel CSE model of the N₂predissociation. Comparison of the model calculations with an experimental database, consisting principally of detailed new measurements of the vibrational and isotopic dependence of the Πu1linewidths and lifetimes, provides convincing evidence that the predissociation of the lowest ÂčΠu levels in N2 is primarily an indirect process, involving spin-orbit coupling between the bÂčΠu- and C³Πu-state levels, the latter levels themselves heavily predissociated electrostatically by the Câ€Č³Πu continuum. The well-known large width of the b(v=3) level in Âč⁎N₂ is caused by an accidental degeneracy with C(v=9). This CSE model provides the first quantitative explanation of the predissociation mechanism for the dipole-accessible ÂčΠu states of N₂, and is thus likely to prove useful in the construction of realistic radiative-transfer and photochemical models for nitrogen-rich planetary atmospheres.This work was partially supported by the Australian Research Council Discovery Program

    Further Evidence for Chemical Fractionation from Ultraviolet Observations of Carbon Monoxide

    Get PDF
    Ultraviolet absorption from interstellar 12CO and 13CO was detected toward rho Oph A and chi Oph. The measurements were obtained at medium resolution with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. Column density ratios, N(12CO)/N(13CO), of 125 \pm 23 and 117 \pm 35 were derived for the sight lines toward rho Oph A and chi Oph, respectively. A value of 1100 \pm 600 for the ratio N(12C16O)/N(12C18O) toward rho Oph A was also obtained. Absorption from vibrationally excited H_2 (v" = 3) was clearly seen toward this star as well. The ratios are larger than the isotopic ratios for carbon and oxygen appropriate for ambient interstellar material. Since for both carbon and oxygen the more abundant isotopomer is enhanced, selective isotopic photodissociation plays the key role in the fractionation process for these directions. The enhancement arises because the more abundant isotopomer has lines that are more optically thick, resulting in more self shielding from dissociating radiation. A simple argument involving the amount of self shielding [from N(12CO)] and the strength of the ultraviolet radiation field premeating the gas (from the amount of vibrationally excited H_2) shows that selective isotopic photodissociation controls the fractionation seen in these two sight lines, as well as the sight line to zeta Oph.Comment: 40 pages, 8 figures, to appear in 10 July 2003 issue of Ap

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    "Outside, it is snowing": Experience and finitude in the nonrepresentational landscapes of Alain Robbe-Grillet

    Get PDF
    Copyright © 2008 PionRomanillos J L, 2008. The definitive, peer-reviewed and edited version of this article is published in Environment and Planning D: Society and Space 26(5) 795 – 822 DOI: 10.1068/d6207This paper presents and explicates the anonymous and impersonal spatialities tentatively mapped in the novels of Alain Robbe-Grillet. Emerging from the kinds of landscapes and visualities articulated, these spatialities are at odds with the kind of anthropocentrism characteristic of phenomenological narratives of spatial experience that would start from an apparently stable human-subject position. It is argued that his body of literature dismantles the anthropocentric narratives and biographies that would produce in both the space of the world and the ‘phenomenological subject’ an unwarranted depth and naturalism. Importantly, and reflecting the theoretical turn towards the being of language, Robbe-Grillet questions the legitimacy of linguistic subjects to capture the spaces of the visible. As such, it is argued that his literature reflects an experience of the critiques of phenomenology. Importantly, this ‘critique’ goes hand in hand with the kinds of spatialities and landscapes that are rendered in the novels—the indefinite perspectives they open up, the paradoxical visualities they sustain or deny, and the disorientation they inject into the heart of spatial experience. These literary effects produce a nonanthropocentric and nonpersonal spatiality which, although contributing to an erasure of the ‘subject’, at the same time expose and open up a sociospatiality based on singularities, intensities, and finitude

    1 of 25 Journal of Environmental Law Advance Access published March 11

    Get PDF
    Abstract This article presents a comparative perspective of the implementation of the Water Framework Directive (WFD). The investigated Member States are the Netherlands, Luxembourg, Belgium, France, Germany, the United Kingdom, Denmark, Romania, Italy, Spain and Portugal. The implementation of the WFD in these Member States was researched with the help of legal experts who completed questionnaires or were interviewed and-limited to five Member States-through interviews with civil servants who were involved with the implemention of the WFD. This research demonstrates that the WFD leaves so much room for discretion that the Member States adopt different approaches concerning the implementation of fundamental parts of the Directive. Although the need for flexibility due to the differences in circumstances is recognised, the new governance approach of the WFD demonstrates a risk that unambitious national practices will lea

    Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Get PDF
    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    VLTI-MATISSE chromatic aperture-synthesis imaging of η Carinae\u27s stellar wind across the Br α line: Periastron passage observations in February 2020

    Get PDF
    Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis ~15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, η Car A, is a luminous blue variable (LBV); the secondary, η Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis imaging allows us to study the mass loss from the enigmatic LBV η Car. Understanding LBVs is a crucial step toward improving our knowledge about massive stars and their evolution. Aims. Our aim is to study the intensity distribution and kinematics of η Car\u27s WWC zone. Methods. Using the VLTI-MATISSE mid-infrared interferometry instrument, we perform Brα imaging of η Car\u27s distorted wind. Results. We present the first VLTI-MATISSE aperture-synthesis images of η Car A\u27s stellar windin several spectral channels distributed across the Brα 4.052 Όm line (spectral resolving power R ~ 960). Our observations were performed close to periastron passage in February 2020 (orbital phase ~ 14.0022). The reconstructed iso-velocity images show the dependence of the primary stellar wind on wavelength or line-of-sight (LOS) velocity with a spatial resolution of 6 mas (~14 au). The radius of the faintest outer wind regions is ~26 mas (~60 au). At several negative LOS velocities, the primary stellar wind is less extended to the northwest than in other directions. This asymmetry is most likely caused by the WWC. Therefore, we see both the velocity field of the undisturbed primary wind and the WWC cavity. In continuum spectral channels, the primary star wind is more compact than in line channels. A fit of the observed continuum visibilities with the visibilities of a stellar wind CMFGEN model (CMFGEN is an atmosphere code developed to model the spectra of a variety of objects) provides a full width at half maximum fit diameter of the primary stellar wind of 2.84 ± 0.06 mas (6.54 ± 0.14 au). We comparethe derived intensity distributions with the CMFGEN stellar wind model and hydrodynamic WWC models
    • 

    corecore