13 research outputs found

    First ALMA maps of HCO, an important precursor of complex organic molecules, towards IRAS 16293-2422

    Get PDF
    The formyl radical HCO has been proposed as the basic precursor of many complex organic molecules such as methanol (CH3OH) and glycolaldehyde (CH2OHCHO). Using ALMA, we have mapped, for the first time at high angular resolution (∼1 arcsec, ∼140 au), HCO towards the solar-type protostellar binary IRAS 16293–2422, where numerous complex organic molecules have been previously detected. We also detected several lines of the chemically related species H2CO, CH3OH, and CH2OHCHO. The observations revealed compact HCO emission arising from the two protostars. The line profiles also show redshifted absorption produced by foreground material of the circumbinary envelope that is infalling towards the protostars. Additionally, IRAM 30 m single-dish data revealed a more extended HCO component arising from the common circumbinary envelope. The comparison between the observed molecular abundances and our chemical model suggests that whereas the extended HCO from the envelope can be formed via gas-phase reactions during the cold collapse of the natal core, the HCO in the hot corinos surrounding the protostars is predominantly formed by the hydrogenation of CO on the surface of dust grains and subsequent thermal desorption during the protostellar phase. The derived abundance of HCO in the dust grains is high enough to produce efficiently more complex species such as H2CO, CH3OH, and CH2OHCHO by surface chemistry. We found that the main formation route of CH2OHCHO is the reaction between HCO and CH2OH

    The GUAPOS project: III. Characterization of the O- and N-bearing complex organic molecules content and search for chemical differentiation

    Get PDF
    Context. The G31.41+0.31 Unbiased ALMA sPectral Observational Survey (GUAPOS) project targets the hot molecular core (HMC) G31.41+0.31 (G31) to reveal the complex chemistry of one of the most chemically rich high-mass star-forming regions outside the Galactic center (GC). Aims. In the third paper of the project we present a study of nine O-bearing (CH3OH, 13CH3OH, CH318OH, CH3CHO, CH3OCH3, CH3COCH3, C2H5OH, aGg′-(CH2OH)2, and gGg′-(CH2OH)2) and six N-bearing (CH3CN,13CH3CN, CH313CN, C2H3CN, C2H5CN, and C2H513CN) complex organic molecules toward G31. The aim of this work is to characterize the abundances in G31 and to compare them with the values estimated in other sources. Moreover, we searched for a possible chemical segregation between O-bearing and N-bearing species in G31, which hosts four compact sources as seen with higher angular resolution data. In the discussion we also include the three isomers of C2H4O2 and the O- and N-bearing molecular species NH2CHO, CH3NCO, CH3C(O)CH2, and CH3NHCHO, which were analyzed in previous GUAPOS papers. Methods. Observations were carried out with the interferometer ALMA and cover the entire Band 3 from 84 to 116 GHz (∼32 GHz bandwidth) with an angular resolution of 1.2″ × 1.2″ (∼4400 au × 4400 au) and a spectral resolution of ∼0.488 MHz (∼1.3- 1.7 km s-1). The transitions of the 14 molecular species were analyzed with the tool SLIM of MADCUBA to determine the physical parameters of the emitting gas. Moreover, we analyzed the morphology of the emission of the molecular species. Results. The values of abundances with respect to H2 in G31 range from 10-6 to 10-10 for the different species. We compared the abundances with respect to methanol of O-bearing, N-bearing, and O- and N-bearing COMs in G31 with 27 other sources, including other hot molecular cores inside and outside the GC, hot corinos, shocked regions, envelopes around young stellar objects, and quiescent molecular clouds, and with chemical models. Conclusions. From the comparison with other sources there is not a unique template for the abundances in hot molecular cores, pointing toward the importance of the thermal history for the chemistry of the various sources. The abundances derived from the chemical models are in good agreement, within a factor of 10, with those of G31. From the analysis of the maps we derived the peak positions of all the molecular species toward G31. Different species peak at slightly different positions, and this, together with the different central velocities of the lines obtained from the spectral fitting, point to chemical differentiation of selected O-bearing species

    The feedback of an HC HII region on its parental molecular core: The case of core A1 in the star-forming region G24.78+0.08

    Get PDF
    Context: G24.78+0.08 is a well known high-mass star-forming region, where several molecular cores harboring OB young stellar objects are found inside a clump of size ≈1 pc. This article focuses on the most prominent of these cores, A1, where an intense hypercompact (HC) HII region has been discovered by previous observations. Aims: Our aim is to determine the physical conditions and the kinematics of core A1, and study the interaction of the HII region with the parental molecular core. Methods: We combine ALMA 1.4 mm high-angular resolution (≈0.′′2) observations of continuum and line emission with multi-epoch Very Long Baseline Interferometry data of water 22 GHz and methanol 6.7 GHz masers. These observations allow us to study the gas kinematics on linear scales from 10 to 104 au, and to accurately map the physical conditions of the gas over core A1. Results: The 1.4 mm continuum is dominated by free-free emission from the intense HC HII region (size ≈1000 au) observed to the North of core A1 (region A1N). Analyzing the H30α line, we reveal a fast bipolar flow in the ionized gas, covering a range of LSR velocities (VLSR) of ≈60 km s−1. The amplitude of the VLSR gradient, 22 km s−1 mpc−1, is one of the highest so far observed towards HC HII regions. Water and methanol masers are distributed around the HC HII region in A1N, and the maser three-dimensional (3D) velocities clearly indicate that the ionized gas is expanding at high speed (≥200 km s−1) into the surrounding molecular gas. The temperature distribution (in the range 100–400 K) over core A1, traced with molecular (CH3OCHO, 13CH3CN, 13CH3OH, and CH3CH2CN) transitions with level energy in the range 30 K ≤ Eu/k ≤ 300 K, reflects the distribution of shocks produced by the fast-expansion of the ionized gas of the HII region. The high-energy (550 K ≤ Eu/k ≤ 800 K) transitions of vibrationally excited CH3CN are likely radiatively pumped, and their rotational temperature can significantly differ from the kinetic temperature of the gas. Over core A1, the VLSR maps from both the 1.4 mm molecular lines and the 6.7 GHz methanol masers consistently show a VLSR gradient (amplitude ≈0.3 km s−1 mpc−1) directed approximately S–N. Rather than gravitationally supported rotation of a massive toroid, we interpret this velocity gradient as a relatively slow expansion of core A1

    Accelerating infall and rotational spin-up in the hot molecular core G31.41+0.31

    Get PDF
    As part of our effort to search for circumstellar disks around high-mass stellar objects, we observed the well-known core G31.41 +0.31 with ALMA at 1.4 mm with an angular resolution of ~0.′′22 (~1700 au). The dust continuum emission has been resolved into two cores namely Main and NE. The Main core, which has the stronger emission and is the more chemically rich, has a diameter of ~5300 au, and is associated with two free-free continuum sources. The Main core looks featureless and homogeneous in dust continuum emission and does not present any hint of fragmentation. Each transition of CH₃CN and CH₃OCHO, both ground and vibrationally excited, as well as those of CH₃CN isotopologues, shows a clear velocity gradient along the NE–SW direction, with velocity linearly increasing with distance from the center, consistent with solid-body rotation. However, when comparing the velocity field of transitions with different upper level energies, the rotation velocity increases with increasing energy of the transition, which suggests that the rotation speeds up toward the center. Spectral lines towardtoward the dust continuum peak show an inverse P-Cygni profile that supports the existence of infall in the core. The infall velocity increases with the energy of the transition suggesting that the infall is accelerating toward the center of the core, consistent with gravitational collapse. Despite the monolithic appearance of the Main core, the presence of red-shifted absorption, the existence of two embedded free-free sources at the center, and the rotational spin-up are consistent with an unstable core undergoing fragmentation with infall and differential rotation due to conservation of angular momentum. Therefore, the most likely explanation for the monolithic morphology is that the large opacity of the dust emission prevents the detection of any inhomogeneity in the core

    Chasing discs around O-type (proto)stars: ALMA evidence for an SiO disc and disc wind from G17.64+0.16★

    Get PDF
    We present high angular resolution (~0.2″) continuum and molecular emission line Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of G17.64+0.16 in Band 6 (220−230 GHz) taken as part of a campaign in search of circumstellar discs around (proto)-O-stars. At a resolution of ~400 au the main continuum core is essentially unresolved and isolated from other strong and compact emission peaks. We detect SiO (5–4) emission that is marginally resolved and elongated in a direction perpendicular to the large-scale outflow seen in the 13 CO (2−1) line using the main ALMA array in conjunction with the Atacama Compact Array (ACA). Morphologically, the SiO appearsto represent a disc-like structure. Using parametric models we show that the position-velocity profile of the SiO is consistent with the Keplerian rotation of a disc around an object between 10 and 30 M⊙ in mass, only if there is also radial expansion from a separate structure. The radial motion component can be interpreted as a disc wind from the disc surface. Models with a central stellar object mass between 20 and 30 M⊙ are the most consistent with the stellar luminosity (1 × 105 L⊙) and indicative of an O-type star. The H30α millimetre recombination line (231.9 GHz) is also detected, but spatially unresolved, and is indicative of a very compact, hot, ionised region co-spatial with the dust continuum core. The broad line-width of the H30α emission (full-width-half-maximum = 81.9 km s−1) is not dominated by pressure-broadening but is consistent with underlying bulk motions. These velocities match those required for shocks to release silicon from dust grains into the gas phase. CH3 CN and CH3 OH thermal emission also shows two arc shaped plumes that curve away from the disc plane. Their coincidence with OH maser emission suggests that they could trace the inner working surfaces of a wide-angle wind driven by G17.64 which impacts the diffuse remnant natal cloud before being redirected into the large-scale outflow direction. Accounting for all observables, we suggest that G17.64 is consistent with a O-type young stellar object in the final stages of protostellar assembly, driving a wind, but that has not yet developed into a compact H II region. The existance and detection of the disc in G17.64 is likely related to its isolated and possibly more evolved nature, traits which may underpin discs in similar sources

    The GUAPOS project: G31.41+0.31 Unbiased ALMA sPectral Observational Survey

    No full text
    Context: One of the goals of astrochemistry is to understand the degree of chemical complexity that can be reached in star-forming regions, along with the identification of precursors of the building blocks of life in the interstellar medium. To answer such questions, unbiased spectral surveys with large bandwidth and high spectral resolution are needed, in particular, to resolve line blending in chemically rich sources and identify each molecule (especially for complex organic molecules). These kinds of observations have already been successfully carried out, primarily towards the Galactic Center, a region that shows peculiar environmental conditions. Aims: We present an unbiased spectral survey of one of the most chemically rich hot molecular cores located outside the Galactic Center, in the high-mass star-forming region G31.41+0.31. The aim of this 3mm spectral survey is to identify and characterize the physical parameters of the gas emission in different molecular species, focusing on complex organic molecules. In this first paper, we present the survey and discuss the detection and relative abundances of the three isomers of C2H4O2: methyl formate, glycolaldehyde, and acetic acid. Methods: Observations were carried out with the ALMA interferometer, covering all of band 3 from 84 to 116 GHz (∼32 GHz bandwidth) with an angular resolution of 1.2 00 × 1.2 00 (∼ 4400 au × 4400 au) and a spectral resolution of ∼0.488 MHz (∼1.3−1.7 km s−1 ). The transitions of the three molecules have been analyzed with the software XCLASS to determine the physical parameters of the emitted gas. Results: All three isomers were detected with abundances of (2 ± 0.6) × 10−7 , (4.3−8) × 10−8 , and (5.0 ± 1.4) × 10−9 for methyl formate, acetic acid, and glycolaldehyde, respectively. Methyl formate and acetic acid abundances are the highest detected up to now, if compared to sources in the literature. The size of the emission varies among the three isomers with acetic acid showing the most compact emission while methyl formate exhibits the most extended emission. Different chemical pathways, involving both grain-surface chemistry and cold or hot gas-phase reactions, have been proposed for the formation of these molecules, but the small number of detections, especially of acetic acid and glycolaldehyde, have made it very difficult to confirm or discard the predictions of the models. The comparison with chemical models in literature suggests the necessity of grain-surface routes for the formation of methyl formate in G31, while for glycolaldehyde both scenarios could be feasible. The proposed grain-surface reaction for acetic acid is not capable of reproducing the observed abundance in this work, while the gas-phase scenario should be further tested, given the large uncertainties involved

    Phosphorus-bearing molecules in the Galactic Center

    Get PDF
    Phosphorus (P) is one of the essential elements for life due to its central role in biochemical processes. Recent searches have shown that P-bearing molecules (in particular PN and PO) are present in star-forming regions, although their formation routes remain poorly understood. In this Letter, we report observations of PN and PO towards seven molecular clouds located in the Galactic Center, which are characterized by different types of chemistry. PN is detected in five out of seven sources, whose chemistry is thought to be shock-dominated. The two sources with PN non-detections correspond to clouds exposed to intense UV/X-rays/cosmic-ray radiation. PO is detected only towards the cloud G+0.693-0.03, with a PO/PN abundance ratio of \sim1.5. We conclude that P-bearing molecules likely form in shocked gas as a result of dust grain sputtering, while are destroyed by intense UV/X-ray/cosmic ray radiation.Comment: 5 pages, 3 figures, 2 tables, accepted for publication in MNRAS Letter

    Effect of methylprednisolone on acute kidney injury in patients undergoing cardiac surgery with a cardiopulmonary bypass pump : a randomized controlled trial

    No full text
    BACKGROUND: Perioperative corticosteroid use may reduce acute kidney injury. We sought to test whether methylprednisolone reduces the risk of acute kidney injury after cardiac surgery. METHODS: We conducted a prespecified substudy of a randomized controlled trial involving patients undergoing cardiac surgery with cardiopulmonary bypass (2007-2014); patients were recruited from 79 centres in 18 countries. Eligibility criteria included a moderate-to-high risk of perioperative death based on a preoperative score of 6 or greater on the European System for Cardiac Operative Risk Evaluation I. Patients (n = 7286) were randomly assigned (1:1) to receive intravenous methylprednisolone (250 mg at anesthetic induction and 250 mg at initiation of cardiopulmonary bypass) or placebo. Patients, caregivers, data collectors and outcome adjudicators were unaware of the assigned intervention. The primary outcome was postoperative acute kidney injury, defined as an increase in the serum creatinine concentration (from the preoperative value) of 0.3 mg/dL or greater (>= 26.5 mu mol/L) or 50% or greater in the 14-day period after surgery, or use of dialysis within 30 days after surgery. RESULTS: Acute kidney injury occurred in 1479/3647 patients (40.6%) in the methylprednisolone group and in 1426/3639 patients (39.2%) in the placebo group (adjusted relative risk 1.04, 95% confidence interval 0.96 to 1.11). Results were consistent across several definitions of acute kidney injury and in patients with preoperative chronic kidney disease. INTERPRETATION: Intraoperative corticosteroid use did not reduce the risk of acute kidney injury in patients with a moderate-to-high risk of perioperative death who had cardiac surgery with cardiopulmonary bypass. Our results do not support the prophylactic use of steroids during cardiopulmonary bypass surgery
    corecore