1,515 research outputs found
Vortex energy and vortex bending for a rotating Bose-Einstein condensate
For a Bose-Einstein condensate placed in a rotating trap, we give a
simplified expression of the Gross-Pitaevskii energy in the Thomas Fermi
regime, which only depends on the number and shape of the vortex lines.
Then we check numerically that when there is one vortex line, our simplified
expression leads to solutions with a bent vortex for a range of rotationnal
velocities and trap parameters which are consistent with the experiments.Comment: 7 pages, 2 figures. submitte
Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs
At early stages of stellar evolution young stars show powerful jets and/or
outflows that interact with protoplanetary discs and their surroundings.
Despite the scarce knowledge about the interaction of jets and/or outflows with
discs, spectroscopic studies based on Herschel and ISO data suggests that gas
shocked by jets and/or outflows can be traced by far-IR (FIR) emission in
certain sources. We want to provide a consistent catalogue of selected atomic
([OI] and [CII]) and molecular (CO, OH, and HO) line fluxes observed in
the FIR, separate and characterize the contribution from the jet and the disc
to the observed line emission, and place the observations in an evolutionary
picture. The atomic and molecular FIR (60-190 ) line emission of
protoplanetary discs around 76 T Tauri stars located in Taurus are analysed.
The observations were carried out within the Herschel key programme Gas in
Protoplanetary Systems (GASPS). The spectra were obtained with the
Photodetector Array Camera and Spectrometer (PACS). The sample is first divided
in outflow and non-outflow sources according to literature tabulations. With
the aid of archival stellar/disc and jet/outflow tracers and model predictions
(PDRs and shocks), correlations are explored to constrain the physical
mechanisms behind the observed line emission. The much higher detection rate of
emission lines in outflow sources and the compatibility of line ratios with
shock model predictions supports the idea of a dominant contribution from the
jet/outflow to the line emission, in particular at earlier stages of the
stellar evolution as the brightness of FIR lines depends in large part on the
specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&
Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory
Context. Debris discs are thought to be formed through the collisional
grinding of planetesimals, and can be considered as the outcome of planet
formation. Understanding the properties of gas and dust in debris discs can
help us to comprehend the architecture of extrasolar planetary systems.
Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have
provided a valuable dataset for the study of debris discs gas and dust
composition. This paper is part of a series of papers devoted to the study of
Herschel PACS observations of young stellar associations.
Aims. This work aims at studying the properties of discs in the Beta Pictoris
Moving Group (BPMG) through far-IR PACS observations of dust and gas.
Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100
and 160 microns of 19 BPMG members, together with spectroscopic observations of
four of them. Spectroscopic observations were centred at 63.18 microns and 157
microns, aiming to detect [OI] and [CII] emission. We incorporated the new
far-IR observations in the SED of BPMG members and fitted modified blackbody
models to better characterise the dust content.
Results. We have detected far-IR excess emission toward nine BPMG members,
including the first detection of an IR excess toward HD 29391.The star HD
172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding
the short list of debris discs with a gas detection. No debris disc in BPMG is
detected in both [OI] and [CII]. The discs show dust temperatures in the range
55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii
from blackbody models in the range 3 to 82 AU. All the objects with a gas
detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table
Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association
We present Herschel PACS photometry of seventeen B- to M-type stars in the 30
Myr-old Tucana-Horologium Association. This work is part of the Herschel Open
Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the
seventeen targets were found to have infrared excesses significantly greater
than the expected stellar IR fluxes, including a previously unknown disk around
HD30051. These six debris disks were fitted with single-temperature blackbody
models to estimate the temperatures and abundances of the dust in the systems.
For the five stars that show excess emission in the Herschel PACS photometry
and also have Spitzer IRS spectra, we fit the data with models of optically
thin debris disks with realistic grain properties in order to better estimate
the disk parameters. The model is determined by a set of six parameters:
surface density index, grain size distribution index, minimum and maximum grain
sizes, and the inner and outer radii of the disk. The best fitting parameters
give us constraints on the geometry of the dust in these systems, as well as
lower limits to the total dust masses. The HD105 disk was further constrained
by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap
Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector
Cosmic rays extensive air showers (EAS) are associated with transient radio
emission, which could provide an efficient new detection method of high energy
cosmic rays, combining a calorimetric measurement with a high duty cycle. The
CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is
investigating this phenomenon in the 10^17 eV region. One challenging point is
the understanding of the radio emission mechanism. A first observation
indicating a linear relation between the electric field produced and the cross
product of the shower axis with the geomagnetic field direction has been
presented (B. Revenu, this conference). We will present here other strong
evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz,
Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde
Mixed and galerkin finite element approximation of flow in a linear viscoelastic porous medium
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis article has been made available through the Brunel Open Access Publishing Fund.We propose two fully discrete mixed and Galerkin finite element approximations to a system of equations describing the slow flow of a slightly compressible single phase fluid in a viscoelastic porous medium. One of our schemes is the natural one for the backward Euler time discretization but, due to the viscoelasticity, seems to be stable only for small enough time steps. The other scheme contains a lagged term in the viscous stress and pressure evolution equations and this is enough to prove unconditional stability. For this lagged scheme we prove an optimal order a priori error estimate under ideal regularity assumptions and demonstrate the convergence rates by using a model problem with a manufactured solution. The model and numerical scheme that we present are a natural extension to âporoviscoelasticityâ of the poroelasticity equations and scheme studied by Philips and Wheeler in (for example) [Philip Joseph Philips, Mary F.Wheeler, Comput. Geosci. 11 (2007) 145â158] although â importantly â their algorithms and codes would need only minor modifications in order to include the viscous effects. The equations and algorithms presented here have application to oil reservoir simulations and also to the condition of hydrocephalus â âwater on the brainâ. An illustrative example is given demonstrating that even small viscoelastic effects can produce noticeable differences in long-time response. To the best of our knowledge this is the first time a mixed and Galerkin scheme has been analysed and implemented for viscoelastic porous media
DZ Cha: a bona fide photoevaporating disc
DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright
protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line
and infrared spectral energy distribution suggest that DZ Cha may be a
photoevaporating disc. We aim to analyse the DZ Cha star + disc system to
identify the mechanism driving the evolution of this object. We have analysed
three epochs of high resolution optical spectroscopy, photometry from the UV up
to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry
observations of DZ Cha. Combining our analysis with previous studies we find no
signatures of accretion in the \Ha line profile in nine epochs covering a
time baseline of years. The optical spectra are dominated by
chromospheric emission lines, but they also show emission from the forbidden
lines [SII] 4068 and [OI] 6300 that indicate a disc outflow. The
polarized images reveal a dust depleted cavity of au in radius and two
spiral-like features, and we derive a disc dust mass limit of
M_\mathrm{dust}
80 \MJup) companions are detected down to 0\farcs07 ( au,
projected). The negligible accretion rate, small cavity, and forbidden line
emission strongly suggests that DZ Cha is currently at the initial stages of
disc clearing by photoevaporation. At this point the inner disc has drained and
the inner wall of the truncated outer disc is directly exposed to the stellar
radiation. We argue that other mechanisms like planet formation or binarity
cannot explain the observed properties of DZ Cha. The scarcity of objects like
this one is in line with the dispersal timescale ( yr) predicted
by this theory. DZ Cha is therefore an ideal target to study the initial stages
of photoevaporation.Comment: A&A in press, language corrections include
Beyond "the Relationship between the Individual and Society": broadening and deepening relational thinking in group analysis
The question of âthe relationship between the individual and societyâ has troubled group analysis since its inception. This paper offers a reading of Foulkes that highlights the emergent, yet evanescent, psychosocial ontology in his writings, and argues for the development of a truly psychosocial group analysis, which moves beyond the individual/society dualism. It argues for a shift towards a language of relationality, and proposes new theoretical resources for such a move from relational sociology, relational psychoanalysis and the âmatrixial thinkingâ of Bracha Ettinger which would broaden and deepen group analytic understandings of relationality
- âŠ