1,515 research outputs found

    Vortex energy and vortex bending for a rotating Bose-Einstein condensate

    Full text link
    For a Bose-Einstein condensate placed in a rotating trap, we give a simplified expression of the Gross-Pitaevskii energy in the Thomas Fermi regime, which only depends on the number and shape of the vortex lines. Then we check numerically that when there is one vortex line, our simplified expression leads to solutions with a bent vortex for a range of rotationnal velocities and trap parameters which are consistent with the experiments.Comment: 7 pages, 2 figures. submitte

    Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs

    Get PDF
    At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, OH, and H2_{2}O) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. The atomic and molecular FIR (60-190 ÎŒm\rm \mu m) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&

    Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory

    Get PDF
    Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the architecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel PACS observations of young stellar associations. Aims. This work aims at studying the properties of discs in the Beta Pictoris Moving Group (BPMG) through far-IR PACS observations of dust and gas. Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100 and 160 microns of 19 BPMG members, together with spectroscopic observations of four of them. Spectroscopic observations were centred at 63.18 microns and 157 microns, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results. We have detected far-IR excess emission toward nine BPMG members, including the first detection of an IR excess toward HD 29391.The star HD 172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii from blackbody models in the range 3 to 82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table

    Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association

    Full text link
    We present Herschel PACS photometry of seventeen B- to M-type stars in the 30 Myr-old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the seventeen targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap

    Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector

    Full text link
    Cosmic rays extensive air showers (EAS) are associated with transient radio emission, which could provide an efficient new detection method of high energy cosmic rays, combining a calorimetric measurement with a high duty cycle. The CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is investigating this phenomenon in the 10^17 eV region. One challenging point is the understanding of the radio emission mechanism. A first observation indicating a linear relation between the electric field produced and the cross product of the shower axis with the geomagnetic field direction has been presented (B. Revenu, this conference). We will present here other strong evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde

    Mixed and galerkin finite element approximation of flow in a linear viscoelastic porous medium

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis article has been made available through the Brunel Open Access Publishing Fund.We propose two fully discrete mixed and Galerkin finite element approximations to a system of equations describing the slow flow of a slightly compressible single phase fluid in a viscoelastic porous medium. One of our schemes is the natural one for the backward Euler time discretization but, due to the viscoelasticity, seems to be stable only for small enough time steps. The other scheme contains a lagged term in the viscous stress and pressure evolution equations and this is enough to prove unconditional stability. For this lagged scheme we prove an optimal order a priori error estimate under ideal regularity assumptions and demonstrate the convergence rates by using a model problem with a manufactured solution. The model and numerical scheme that we present are a natural extension to ‘poroviscoelasticity’ of the poroelasticity equations and scheme studied by Philips and Wheeler in (for example) [Philip Joseph Philips, Mary F.Wheeler, Comput. Geosci. 11 (2007) 145–158] although — importantly — their algorithms and codes would need only minor modifications in order to include the viscous effects. The equations and algorithms presented here have application to oil reservoir simulations and also to the condition of hydrocephalus — ‘water on the brain’. An illustrative example is given demonstrating that even small viscoelastic effects can produce noticeable differences in long-time response. To the best of our knowledge this is the first time a mixed and Galerkin scheme has been analysed and implemented for viscoelastic porous media

    DZ Cha: a bona fide photoevaporating disc

    Full text link
    DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. We aim to analyse the DZ Cha star + disc system to identify the mechanism driving the evolution of this object. We have analysed three epochs of high resolution optical spectroscopy, photometry from the UV up to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry observations of DZ Cha. Combining our analysis with previous studies we find no signatures of accretion in the \Ha line profile in nine epochs covering a time baseline of ∌20\sim20 years. The optical spectra are dominated by chromospheric emission lines, but they also show emission from the forbidden lines [SII] 4068 and [OI] 6300 A˚\,\AA that indicate a disc outflow. The polarized images reveal a dust depleted cavity of ∌7\sim7 au in radius and two spiral-like features, and we derive a disc dust mass limit of M_\mathrm{dust} 80 \MJup) companions are detected down to 0\farcs07 (∌8\sim 8 au, projected). The negligible accretion rate, small cavity, and forbidden line emission strongly suggests that DZ Cha is currently at the initial stages of disc clearing by photoevaporation. At this point the inner disc has drained and the inner wall of the truncated outer disc is directly exposed to the stellar radiation. We argue that other mechanisms like planet formation or binarity cannot explain the observed properties of DZ Cha. The scarcity of objects like this one is in line with the dispersal timescale (â‰Č105\lesssim 10^5 yr) predicted by this theory. DZ Cha is therefore an ideal target to study the initial stages of photoevaporation.Comment: A&A in press, language corrections include

    Main results of second reading by district in Lorraine

    Get PDF

    Beyond "the Relationship between the Individual and Society": broadening and deepening relational thinking in group analysis

    Get PDF
    The question of ‘the relationship between the individual and society’ has troubled group analysis since its inception. This paper offers a reading of Foulkes that highlights the emergent, yet evanescent, psychosocial ontology in his writings, and argues for the development of a truly psychosocial group analysis, which moves beyond the individual/society dualism. It argues for a shift towards a language of relationality, and proposes new theoretical resources for such a move from relational sociology, relational psychoanalysis and the ‘matrixial thinking’ of Bracha Ettinger which would broaden and deepen group analytic understandings of relationality
    • 

    corecore