6 research outputs found

    Linking the dust and chemical evolution: Taurus and Perseus -- New collisional rates for HCN, HNC, and their C, N, and H isotopologues

    Full text link
    HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. We perform an up-to-date gas and dust chemical characterization of two different star-forming regions, TMC 1-C and NGC 1333-C7, using new collisional rates of HCN, HNC, and their isotopologues. We investigated the possible effects of the environment and stellar feedback in their chemistry and their evolution. With millimeter observations, we derived their column densities, the C and N isotopic fractions, the isomeric ratios, and the deuterium fractionation. The continuum data at 3 mm and 850 μ\mum allowed us to compute the emissivity spectral index and look for grain growth as an evolutionary tracer. The H13^{13}CN/HN13^{13}C ratio is anticorrelated with the deuterium fraction of HCN, thus it can readily serve as a proxy for the temperature. The spectral index (β1.342.09)(\beta\sim 1.34-2.09) shows a tentative anticorrelation with the H13^{13}CN/HN13^{13}C ratio, suggesting grain growth in the evolved, hotter, and less deuterated sources. Unlike TMC 1-C, the south-to-north gradient in dust temperature and spectral index observed in NGC 1333-C7 suggests feedback from the main NGC 1333 cloud. With this up-to-date characterization of two star-forming regions, we found that the chemistry and the physical properties are tightly related. The dust temperature, deuterium fraction, and the spectral index are complementary evolutionary tracers. The large-scale environmental factors may dominate the chemistry and evolution in clustered star-forming regions.Comment: 25 pages, 20 figure

    Gas phase Elemental abundances in Molecular cloudS (GEMS) : IV. Observational results and statistical trends

    Get PDF
    Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e(-)), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e(-)) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species ((CO)-C-13, (CO)-O-18, HCO+, (HCO+)-C-13, (HCO+)-O-18, HCN, (HCN)-C-13, HNC, HCS+, CS, SO, (SO)-S-34, H2S, and OCS) in 244 positions, covering the A(V) similar to 3 to similar to 100 mag, n(H-2) similar to a few 10(3) to 10(6) cm(-3), and T-k similar to 10 to similar to 30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) (CO)-C-13 and (CO)-O-18 isotopologs; (2) (HCO+)-C-13, (HCO+)-O-18, H-13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until T-K similar to 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of similar to 3. The abundances of H-13 CO+, HC18 O+, H-13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law proportional to n(H-2)(-0.8 +/- 0.2). The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)(gas) proportional to n(H-2)(-0.6 +/- 0.1). The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the (CO)-O-18 abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the (CO)-C-13/(CO)-O-18, HCO+/(HCO+)-C-13, and H-13 CO+/(HCN)-C-13 abundance ratios as chemical diagnostics of star formation in external galaxies.Peer reviewe

    Photoprocessing of H2S on dust grains Building S chains in translucent clouds and comets: Building S chains in translucent clouds and comets

    Get PDF
    Context. Sulfur is a biogenic element used as a tracer of the evolution of interstellar clouds to stellar systems. However, most of the expected sulfur in molecular clouds remains undetected. Sulfur disappears from the gas phase in two steps. The first depletion occurs during the translucent phase, reducing the gas-phase sulfur by 7-40 times, while the following freeze-out step occurs in molecular clouds, reducing it by another order of magnitude. This long-standing question awaits an explanation. Aims. The aim of this study is to understand under what form the missing sulfur is hiding in molecular clouds. The possibility that sulfur is depleted onto dust grains is considered. Methods. Experimental simulations mimicking HS ice UV photoprocessing in molecular clouds were conducted at 8 K under ultra-high vacuum. The ice was subsequently warmed up to room temperature. The ice was monitored using infrared spectroscopy, and the desorbing molecules were measured by quadrupole mass spectrometry in the gas phase. Theoretical Monte Carlo simulations were performed for interpretation of the experimental results and extrapolation to the astrophysical and planetary conditions. Results. HS formation was observed during irradiation at 8 K. Molecules HS x with x > 2 were also identified and found to desorb during warm-up, along with S to S 4 species. Larger S x molecules up to S 8 are refractory at room temperature and remained on the substrate forming a residue. Monte Carlo simulations were able to reproduce the molecules desorbing during warming up, and found that residues are chains of sulfur consisting of 6-7 atoms. Conclusions. Based on the interpretation of the experimental results using our theoretical model, it is proposed that S + in translucent clouds contributes notoriously to S depletion in denser regions by forming long S chains on dust grains in a few times 10 4 yr. We suggest that the S to S 4 molecules observed in comets are not produced by fragmentation of these large chains. Instead, they probably come either from UV photoprocessing of HS-bearing ice produced in molecular clouds or from short S chains formed during the translucent cloud phase. Astrodynamics & Space Mission

    Grain growth and its chemical impact in the first hydrostatic core phase

    No full text
    International audienceContext. The first hydrostatic core (FHSC) phase is a brief stage in the protostellar evolution that is difficult to detect. Its chemical composition determine that of later evolutionary stages. Numerical simulations are the tool of choice to study these objects.Aims. Our goal is to characterize the chemical evolution of gas and dust during the formation of the FHSC. Moreover, we are interested in analyzing, for the first time with 3D magnetohydrodynamic (MHD) simulations, the role of grain growth in its chemistry.Methods. We postprocessed 2 × 105 tracer particles from a RAMSES non-ideal MHD simulation using the codes NAUTILUS and SHARK to follow the chemistry and grain growth throughout the simulation.Results. Gas-phase abundances of most of the C, O, N, and S reservoirs in the hot corino at the end of the simulation match the ice-phase abundances from the prestellar phase. Interstellar complex organic molecules such as methyl formate, acetaldehyde, and formamide are formed during the warm-up process. Grain size in the hot corino (nH > 1011 cm−3) increases forty-fold during the last 30 kyr, with negligible effects on its chemical composition. At moderate densities (1010 < nH < 1011 cm−3) and cool temperatures 15 < T < 50 K, increasing grain sizes delay molecular depletion. At low densities (nH ~ 107 cm−3), grains do not grow significantly. To assess the need to perform chemo-MHD calculations, we compared our results with a two-step model that reproduces well the abundances of C and O reservoirs, but not the N and S reservoirs.Conclusions. The chemical composition of the FHSC is heavily determined by that of the parent prestellar core. Chemo-MHD computations are needed for an accurate prediction of the abundances of the main N and S elemental reservoirs. The impact of grain growth in moderately dense areas delaying depletion permits the use of abundance ratios as grain growth proxies
    corecore