31 research outputs found

    Scientists' warning to humanity on tree extinctions

    Get PDF
    Societal Impact Statement Trees play vital roles in many of the world's ecosystems while providing many benefits to people. New evidence indicates that a third of tree species are threatened with extinction, representing a tree extinction crisis. Here we demonstrate how tree species extinction will lead to the loss of many other plants and animals and significantly alter the world's ecosystems. We also show how tree extinction will negatively affect billions of people through loss of livelihoods and benefits. We highlight a series of urgent actions needed to avert an ecological, cultural and socio-economic catastrophe caused by widespread extinction of tree species. Summary Trees are of exceptional ecological importance, playing a major functional role in the world's ecosystems, while also supporting many other plants, animals and fungi. Many tree species are also of direct value to people, providing a wide range of socioeconomic benefits. Loss of tree diversity could lead to abrupt declines in biodiversity, ecosystem functions and services and ultimately ecosystem collapse. Here we provide an overview of the current knowledge regarding the number of tree species that are threatened with extinction, and the threats that affect them, based on results of the Global Tree Assessment. This evidence suggests that a third of the world's tree species are currently threatened with extinction, which represents a major ecological crisis. We then examine the potential implications of tree extinctions, in terms of the functioning of the biosphere and impacts on human well-being. Large-scale extinction of tree species will lead to major biodiversity losses in other species groups and substantially alter the cycling of carbon, water and nutrients in the world's ecosystems. Tree extinction will also undermine the livelihoods of the billions of people who currently depend on trees and the benefits they provide. This warning to humanity aims to raise awareness of the tree extinction crisis, which is a major environmental issue that requires urgent global attention. We also identify some priority actions that need to be taken to reduce the extinction risk of tree species and to avert the ecological and socio-economic catastrophe that will result from large-scale extinction of tree specie

    Impacts of herbivory by ecological replacements on an island ecosystem

    Get PDF
    The use of ecological replacements (analogue species to replace extinct taxa) to restore ecosystem functioning is a promising conservation tool. However, this approach is controversial, in part due to a paucity of data on interactions between analogue species and established taxa in the ecosystem. We conducted ecological surveys, comprehensively DNA barcoded an ecosystem's flora and inferred the diet of the introduced Aldabra giant tortoise, acting as an ecological replacement, to understand how it might have modified island plant communities on a Mauritian islet. Through further dietary analyses, we investigated consequential effects on the threatened endemic Telfair's skink. Dietary overlap between tortoises and skinks was greater than expected by chance. However, there was a negative correlation between tortoise and skink preferences in herbivory and minimal overlap in the plants most frequently consumed by the reptiles. Changes in the plant community associated with 7 years of tortoise grazing were characterised by a decrease in the percentage cover of native herbs and creepers, and an increase in the cover of an invasive herb when compared to areas without tortoises. However, tortoise dietary preferences themselves did not directly drive changes in the plant community. Tortoises successfully dispersed the seeds of an endemic palm, which in time may increase the extent of unique palm-rich habitat. We found no evidence that tortoises have increased the extent of plant species hypothesised to be part of a lost Mauritian tortoise grazed community. Synthesis and applications. Due to a negative correlation in tortoise and skink dietary preferences and minimal overlap in the most frequently consumed taxa, the presence of tortoises is unlikely to have detrimental impacts on Telfair's skinks. Tortoise presence is likely to be beneficial to skinks in the long term by increasing the extent of palm-rich habitat. Although tortoises are likely to play a role in controlling invasive plants, they are not a panacea for this challenge. After 7 years, tortoises have not resurrected a lost tortoise grazed community that we hypothesise might have existed in limited areas on the islet, indicating that further interventions may be required to restore this plant community

    Dominance and rarity in tree communities across the globe: Patterns, predictors and threats

    Get PDF
    Aim: Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? Location: Global. Time period: 1990–2017. Major taxa studied: Trees. Methods: We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. Results: Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large‐scale land degradation. Main conclusions: By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species should be considered in large‐scale management and conservation practices

    Building robust, practicable counterfactuals and scenarios to evaluate the impact of species conservation interventions using inferential approaches

    Get PDF
    Robust evaluation of the impact of biodiversity conservation actions is important not only for ensuring that conservation strategies are effective and maximise return on investment, but also to identify and celebrate successful conservation strategies. This evaluation can be retrospective (comparing the current situation to a counterfactual scenario) or forward-looking (comparing future scenarios with or without conservation). However, assessment of impact using experimental or quasi-experimental designs is typically difficult in conservation, so rigorous inferential approaches are required. Inferential assessment of impact is a key part of the new IUCN Green Status of Species, which greatly amplifies the need for standardised and practical species impact evaluation methods. Here, we use the Green Status of Species method as a base to review how inferential methods can be used to evaluate conservation impact at the species level. We identify three key components of the inferential impact evaluation process—estimation of scenario outcomes, selection of baseline scenario, and frame of reference—and explain, with examples, how to reduce the subjectivity of these steps. We propose a step-by-step guide, incorporating these principles, that can be used to infer scenario outcomes in order to evaluate past and future conservation impact in a wide range of situations, not just Green Status of Species assessments. We recommend that future non-experimental conservation interventions facilitate the process of evaluating impact by identifying the variable(s) that will be used to measure impact at the design stage, and by using conceptual models to help choose conservation actions most likely to have the desired impact

    How many bird and mammal extinctions has recent conservation action prevented?

    Get PDF
    Aichi Target 12 of the Convention on Biological Diversity (CBD) aims to ‘prevent extinctions of known threatened species’. To measure its success, we used a Delphi expert elicitation method to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993 - 2020 (the lifetime of the CBD) and 2010 - 2020 (the timing of Aichi Target 12). We found that conservation prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and 2–7 mammal extinctions since 2010. Many remain highly threatened, and may still become extinct in the near future. Nonetheless, given that ten bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar

    Madagascar’s extraordinary biodiversity: Evolution, distribution, and use

    Get PDF
    Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity

    How many bird and mammal extinctions has recent conservation action prevented?

    Get PDF
    Aichi Target 12 of the Convention on Biological Diversity (CBD) contains the aim to ‘prevent extinctions of known threatened species’. To measure the degree to which this was achieved, we used expert elicitation to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993–2020 (the lifetime of the CBD) and 2010–2020 (the timing of Aichi Target 12). We found that conservation action prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and two to seven mammal extinctions since 2010. Many remain highly threatened and may still become extinct. Considering that 10 bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions.https://wileyonlinelibrary.com/journal/conlMammal Research Institut

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
    corecore