12 research outputs found

    Smartphone sensors for monitoring cancer-related Quality of Life: App design, EORTC QLQ-C30 mapping and feasibility study in healthy subjects

    Full text link
    [EN] Quality of life (QoL) indicators are now being adopted as clinical outcomes in clinical trials on cancer treatments. Technology-free daily monitoring of patients is complicated, time-consuming and expensive due to the need for vast amounts of resources and personnel. The alternative method of using the patients¿ own phones could reduce the burden of continuous monitoring of cancer patients in clinical trials. This paper proposes monitoring the patients¿ QoL by gathering data from their own phones. We considered that the continuous multiparametric acquisition of movement, location, phone calls, conversations and data use could be employed to simultaneously monitor their physical, psychological, social and environmental aspects. An open access phone app was developed (Human Dynamics Reporting Service (HDRS)) to implement this approach. We here propose a novel mapping between the standardized QoL items for these patients, the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and define HDRS monitoring indicators. A pilot study with university volunteers verified the plausibility of detecting human activity indicators directly related to QoL.Funding for this study was provided by the authors' various departments, and partially by the CrowdHealth Project (Collective Wisdom Driving Public Health Policies (727560)) and the MTS4up project (DPI2016-80054-R).Asensio Cuesta, S.; Sánchez-García, Á.; Conejero, JA.; Sáez Silvestre, C.; Rivero-Rodriguez, A.; Garcia-Gomez, JM. (2019). Smartphone sensors for monitoring cancer-related Quality of Life: App design, EORTC QLQ-C30 mapping and feasibility study in healthy subjects. International Journal of Environmental research and Public Health. 16(3):1-18. https://doi.org/10.3390/ijerph16030461S118163Number of Smartphone Users Worldwide from 2014 to 2020 (in Billions)https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/Mirkovic, J., Kaufman, D. R., & Ruland, C. M. (2014). Supporting Cancer Patients in Illness Management: Usability Evaluation of a Mobile App. JMIR mHealth and uHealth, 2(3), e33. doi:10.2196/mhealth.3359Xing Su, Hanghang Tong, & Ping Ji. (2014). Activity recognition with smartphone sensors. Tsinghua Science and Technology, 19(3), 235-249. doi:10.1109/tst.2014.6838194Schmitz Weiss, A. (2013). Exploring News Apps and Location-Based Services on the Smartphone. Journalism & Mass Communication Quarterly, 90(3), 435-456. doi:10.1177/1077699013493788Higgins, J. P. (2016). Smartphone Applications for Patients’ Health and Fitness. The American Journal of Medicine, 129(1), 11-19. doi:10.1016/j.amjmed.2015.05.038Rivenson, Y., Ceylan Koydemir, H., Wang, H., Wei, Z., Ren, Z., Günaydın, H., … Ozcan, A. (2018). Deep Learning Enhanced Mobile-Phone Microscopy. ACS Photonics, 5(6), 2354-2364. doi:10.1021/acsphotonics.8b00146Priye, A., Ball, C. S., & Meagher, R. J. (2018). Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Analytical Chemistry, 90(21), 12385-12389. doi:10.1021/acs.analchem.8b03521Measuring Quality of Life for Cancer Patients: Where Are We Today and Where Are We Headed Tomorrow?http://blog.mdsol.com/measuring-quality-of-life-for-cancer-patients-where-are-we-today-and-where-are-we-headed-tomorrow/Zulueta, J., Piscitello, A., Rasic, M., Easter, R., Babu, P., Langenecker, S. A., … Leow, A. (2018). Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata: A BiAffect Digital Phenotyping Study. Journal of Medical Internet Research, 20(7), e241. doi:10.2196/jmir.9775Caruso, R., GiuliaNanni, M., Riba, M. B., Sabato, S., & Grassi, L. (2017). Depressive Spectrum Disorders in Cancer: Diagnostic Issues and Intervention. A Critical Review. Current Psychiatry Reports, 19(6). doi:10.1007/s11920-017-0785-7THE WHOQOL GROUP. (1998). Development of the World Health Organization WHOQOL-BREF Quality of Life Assessment. Psychological Medicine, 28(3), 551-558. doi:10.1017/s0033291798006667Basic Issues Concerning Health-Related Quality of Life. (2017). Central European Journal of Urology, 70(2). doi:10.5173/ceju.2017.923Sloan, J. A. (2011). Metrics to Assess Quality of Life After Management of Early-Stage Lung Cancer. The Cancer Journal, 17(1), 63-67. doi:10.1097/ppo.0b013e31820e15dcBordoni, R., Ciardiello, F., von Pawel, J., Cortinovis, D., Karagiannis, T., Ballinger, M., … Rittmeyer, A. (2018). Patient-Reported Outcomes in OAK: A Phase III Study of Atezolizumab Versus Docetaxel in Advanced Non–Small-cell Lung Cancer. Clinical Lung Cancer, 19(5), 441-449.e4. doi:10.1016/j.cllc.2018.05.011Hartkopf, A. D., Graf, J., Simoes, E., Keilmann, L., Sickenberger, N., Gass, P., … Wallwiener, M. (2017). Electronic-Based Patient-Reported Outcomes: Willingness, Needs, and Barriers in Adjuvant and Metastatic Breast Cancer Patients. JMIR Cancer, 3(2), e11. doi:10.2196/cancer.6996Wallwiener, M., Matthies, L., Simoes, E., Keilmann, L., Hartkopf, A. D., Sokolov, A. N., … Brucker, S. Y. (2017). Reliability of an e-PRO Tool of EORTC QLQ-C30 for Measurement of Health-Related Quality of Life in Patients With Breast Cancer: Prospective Randomized Trial. Journal of Medical Internet Research, 19(9), e322. doi:10.2196/jmir.8210Gresham, G., Hendifar, A. E., Spiegel, B., Neeman, E., Tuli, R., Rimel, B. J., … Shinde, A. M. (2018). Wearable activity monitors to assess performance status and predict clinical outcomes in advanced cancer patients. npj Digital Medicine, 1(1). doi:10.1038/s41746-018-0032-6BOHANNON, R. W. (1997). Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age and Ageing, 26(1), 15-19. doi:10.1093/ageing/26.1.15Pérez-García, V. M., Fitzpatrick, S., Pérez-Romasanta, L. A., Pesic, M., Schucht, P., Arana, E., & Sánchez-Gómez, P. (2016). Applied mathematics and nonlinear sciences in the war on cancer. Applied Mathematics and Nonlinear Sciences, 1(2), 423-436. doi:10.21042/amns.2016.2.00036Shin, W., Song, S., Jung, S.-Y., Lee, E., Kim, Z., Moon, H.-G., … Lee, J. E. (2017). The association between physical activity and health-related quality of life among breast cancer survivors. Health and Quality of Life Outcomes, 15(1). doi:10.1186/s12955-017-0706-9Wearable Fitness Monitors Useful in Cancer Treatment, Study Findswww.sciencedaily.com/releases/2018/05/180501130856.htmBade, B. C., Brooks, M. C., Nietert, S. B., Ulmer, A., Thomas, D. D., Nietert, P. J., … Silvestri, G. A. (2016). Assessing the Correlation Between Physical Activity and Quality of Life in Advanced Lung Cancer. Integrative Cancer Therapies, 17(1), 73-79. doi:10.1177/1534735416684016Fortner, B. V., Stepanski, E. J., Wang, S. C., Kasprowicz, S., & Durrence, H. H. (2002). Sleep and Quality of Life in Breast Cancer Patients. Journal of Pain and Symptom Management, 24(5), 471-480. doi:10.1016/s0885-3924(02)00500-6Mishra, S. I., Scherer, R. W., Snyder, C., Geigle, P., & Gotay, C. (2014). Are Exercise Programs Effective for Improving Health-Related Quality of Life Among Cancer Survivors? A Systematic Review and Meta-Analysis. Oncology Nursing Forum, 41(6), E326-E342. doi:10.1188/14.onf.e326-e342Ratcliff, C. G., Lam, C. Y., Arun, B., Valero, V., & Cohen, L. (2014). Ecological momentary assessment of sleep, symptoms, and mood during chemotherapy for breast cancer. Psycho-Oncology, 23(11), 1220-1228. doi:10.1002/pon.3525Cox, S. M., Lane, A., & Volchenboum, S. L. (2018). Use of Wearable, Mobile, and Sensor Technology in Cancer Clinical Trials. JCO Clinical Cancer Informatics, (2), 1-11. doi:10.1200/cci.17.00147Brown, W., Yen, P.-Y., Rojas, M., & Schnall, R. (2013). Assessment of the Health IT Usability Evaluation Model (Health-ITUEM) for evaluating mobile health (mHealth) technology. Journal of Biomedical Informatics, 46(6), 1080-1087. doi:10.1016/j.jbi.2013.08.001Darlow, S., & Wen, K.-Y. (2016). Development testing of mobile health interventions for cancer patient self-management: A review. Health Informatics Journal, 22(3), 633-650. doi:10.1177/1460458215577994Martin Sanchez, F., Gray, K., Bellazzi, R., & Lopez-Campos, G. (2014). Exposome informatics: considerations for the design of future biomedical research information systems. Journal of the American Medical Informatics Association, 21(3), 386-390. doi:10.1136/amiajnl-2013-001772Kim, H. H., Lee, S. Y., Baik, S. Y., & Kim, J. H. (2015). MELLO: Medical lifelog ontology for data terms from self-tracking and lifelog devices. International Journal of Medical Informatics, 84(12), 1099-1110. doi:10.1016/j.ijmedinf.2015.08.005Kessel, K. A., Vogel, M. M., Alles, A., Dobiasch, S., Fischer, H., & Combs, S. E. (2018). Mobile App Delivery of the EORTC QLQ-C30 Questionnaire to Assess Health-Related Quality of Life in Oncological Patients: Usability Study. JMIR mHealth and uHealth, 6(2), e45. doi:10.2196/mhealth.9486Elsbernd, A., Hjerming, M., Visler, C., Hjalgrim, L. L., Niemann, C. U., Boisen, K., & Pappot, H. (2018). Cocreated Smartphone App to Improve the Quality of Life of Adolescents and Young Adults with Cancer (Kræftværket): Protocol for a Quantitative and Qualitative Evaluation. JMIR Research Protocols, 7(5), e10098. doi:10.2196/1009

    Skin and Soft Tissue Infections (Patera Foot) in Immigrants, Spain

    Get PDF
    An unusual skin and soft tissue infection of the lower limbs has been observed in immigrants from sub-Saharan Africa who cross the Atlantic Ocean crowded on small fishing boats (pateras). Response to conventional treatment is usually poor. Extreme extrinsic factors (including new pathogens) may contribute to the etiology of the infection and its pathogenesis

    Childhood asthma outcomes during the COVID-19 pandemic: Findings from the PeARL multinational cohort

    Get PDF
    Background The interplay between COVID-19 pandemic and asthma in children is still unclear. We evaluated the impact of COVID-19 pandemic on childhood asthma outcomes.Methods The PeARL multinational cohort included 1,054 children with asthma and 505 non-asthmatic children aged between 4 and 18 years from 25 pediatric departments, from 15 countries globally. We compared the frequency of acute respiratory and febrile presentations during the first wave of the COVID-19 pandemic between groups and with data available from the previous year. In children with asthma, we also compared current and historical disease control.Results During the pandemic, children with asthma experienced fewer upper respiratory tract infections, episodes of pyrexia, emergency visits, hospital admissions, asthma attacks, and hospitalizations due to asthma, in comparison with the preceding year. Sixty-six percent of asthmatic children had improved asthma control while in 33% the improvement exceeded the minimal clinically important difference. Pre-bronchodilatation FEV1 and peak expiratory flow rate were improved during the pandemic. When compared to non-asthmatic controls, children with asthma were not at increased risk of LRTIs, episodes of pyrexia, emergency visits, or hospitalizations during the pandemic. However, an increased risk of URTIs emerged.Conclusion Childhood asthma outcomes, including control, were improved during the first wave of the COVID-19 pandemic, probably because of reduced exposure to asthma triggers and increased treatment adherence. The decreased frequency of acute episodes does not support the notion that childhood asthma may be a risk factor for COVID-19. Furthermore, the potential for improving childhood asthma outcomes through environmental control becomes apparent.</p

    Development and validation of a sexual relations satisfaction scale in patients with breast cancer - "SEXSAT-Q".

    No full text
    Because the currently available questionnaires to evaluate sexual changes on breast cancer women only address the sexual sphere with a few questions our purpose was to develop a questionnaire that assesses changes in sexual dysfunction and satisfaction in women treated for breast cancer. A sample was selected of women aged between 18 and 65 who had had surgery for breast cancer, completed neoadjuvant/adjuvant chemotherapy treatment and could be receiving adjuvant hormonal treatment, with an active sex life at least 3 months before starting treatment. Metastatic disease was excluded. A questionnaire structured in 4 dimensions was developed. The MOS SF-12 and QLQ-BR23 questionnaires were also provided. The following metric properties were evaluated: item analysis; internal consistency; temporal stability; construct validity; concurrent, convergent and divergent validity; and feasibility. Three samples were recruited: a pilot sample of 20; a reduction sample of 152; and a validation sample of 148. The presence of 6 dimensions was confirmed: 1) Loss of sex drive; 2) worsening of body image; 3) psychological coping; 4) discomfort during intercourse; 5) satisfaction with sexual relations; and 6) satisfaction with breast reconstruction. Good goodness-of-fit statistics were obtained (χ2/df = 1.5, GFI = 0.9, AGFI = 0.84, CFI = 0.959, RMSEA = 0.062). Reliability was good (α = 0.855), as was test-retest stability (r = 0.838). The correlation with the convergent questionnaires proved to be higher than that obtained with generic measurements. We were able to develop a short questionnaire (17 items) capable of measuring sexual satisfaction in women with breast cancer with good metric properties

    Discovering HIV related information by means of association rules and machine learning

    Get PDF
    Acquired immunodeficiency syndrome (AIDS) is still one of the main health problems worldwide. It is therefore essential to keep making progress in improving the prognosis and quality of life of affected patients. One way to advance along this pathway is to uncover connections between other disorders associated with HIV/AIDS-so that they can be anticipated and possibly mitigated. We propose to achieve this by using Association Rules (ARs). They allow us to represent the dependencies between a number of diseases and other specific diseases. However, classical techniques systematically generate every AR meeting some minimal conditions on data frequency, hence generating a vast amount of uninteresting ARs, which need to be filtered out. The lack of manually annotated ARs has favored unsupervised filtering, even though they produce limited results. In this paper, we propose a semi-supervised system, able to identify relevant ARs among HIV-related diseases with a minimal amount of annotated training data. Our system has been able to extract a good number of relationships between HIV-related diseases that have been previously detected in the literature but are scattered and are often little known. Furthermore, a number of plausible new relationships have shown up which deserve further investigation by qualified medical experts
    corecore