13 research outputs found

    Analysis of a new begomovirus unveils a composite element conserved in the CP gene promoters of several Geminiviridae genera: Clues to comprehend the complex regulation of late genes

    Get PDF
    "A novel bipartite begomovirus, Blechum interveinal chlorosis virus (BleICV), was characterized at the genome level. Comparative analyses revealed that BleICV coat protein (CP) gene promoter is highly divergent from the equivalent region of other begomoviruses (BGVs), with the single exception of Tomato chino La Paz virus (ToChLPV) with which it shares a 23-bp phylogenetic footprint exhibiting dyad symmetry. Systematic examination of the homologous CP promoter segment of 132 New World BGVs revealed the existence of a quasi-palindromic DNA segment displaying a strongly conserved ACTT-(N7)-AAGT core. The spacer sequence between the palindromic motifs is constant in length, but its sequence is highly variable among viral species, presenting a relaxed consensus (TT)GGKCCCY, which is similar to the Conserved Late Element or CLE (GTGGTCCC), a putative TrAP-responsive element. The homologous CP promoter region of Old World BGVs exhibited a distinct organization, with the putative TATA-box overlapping the left half of the ACTT-N7 composite element. Similar CP promoter sequences, dubbed “TATA-associated composite element” or TACE, were found in viruses belonging to different Geminiviridae genera, hence hinting unsuspected evolutionary relationships among those lineages. To get cues about the TACE function, the regulatory function of the CLE was explored in distinct experimental systems. Transgenic tobacco plants harboring a GUS reporter gene driven by a promoter composed by CLE multimers expressed high beta-glucuronidase activity in absence of viral factors, and that expression was increased by begomovirus infection. On the other hand, the TrAP-responsiveness of a truncated CP promoter of Tomato golden mosaic virus (TGMV) was abolished by site-directed mutation of the only CLE present in it, whereas the artificial addition of one CLE to the -125 truncated promoter strongly enhanced the transactivation level in tobacco protoplasts. These results indicate that the CLE is a TrAP-responsive element, hence providing valuable clues to interpret the recurrent association of the CLE with the TACE. On the basis of the aforesaid direct evidences and the insights afforded by the extensive comparative analysis of BleICV CP promoter, we propose that the TACE might be involved in the TrAP-mediated derepression of CP gene in vascular tissues.

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Veinte años de investigación con Geminivirus en vegetales en Guanajuato Veinte años de investigación con Geminivirus en vegetales en Guanajuato

    No full text
    <p class="Default"> </p> <p>Virology is an important science because viral diseases affect direct or indirectly to human kind. There are several families of plant viruses infecting important crops. Among those, the family <em>Geminiviridae </em>has become an important problem since cause serious damages around the world. In Mexico, the presence of geminiviruses was reported in the late 70’s. Because their importance, the members of the Plant Virology Laboratory at Cinvestav Irapuato have been interested in generating useful information to propose strategies for geminivirus control. Here, we summarized 20 years of research in geminivirology in our laboratory. Another intention was to show how the advances in other research areas such as microbiology, physics, biochemistry, molecular biology and more recently bioinformatics could contribute to our knowledge and understanding of geminivirus.</p><br><span style="font-family: Times New Roman; font-size: small;"> </span><p class="MsoNormal" style="margin: 0cm 0cm 10pt;"><span style="color: black; line-height: 115%; font-size: 7.5pt; mso-bidi-font-family: "Bookman Old Style";"><span style="font-family: Calibri;">La virología es una ciencia muy importante, debido a que los virus perjudican los intereses del hombre, ya sea directamente afectando su salud o indirectamente infectando sus cultivos, su ganado o sus mascotas. Entre las familias de virus que infectan plantas destaca la familia <em>Geminiviridae</em>, convertida en un serio problema en el mundo. En México la presencia de estos virus fue reportada a finales de la década de los 70s. Debido a que causan grandes pérdidas agronómicas, el grupo de virología vegetal del Cinvestav Irapuato inició su estudio a finales de los 80s con la intención de poder proponer estrategias de solución. Nuestra intención en este ensayo es, además de hacer una recapitulación de las investigaciones realizadas en los últimos 20 años, mostrar como el avance de una ciencia (virología) se ve influenciada por los avances en otras ramas como la microbiología, física, bioquímica, biología molecular y más recientemente la bioinformática.</span></span></p><span style="font-family: Times New Roman; font-size: small;"> </span

    Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C : A prospective observational study

    Get PDF
    Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with ≥2 clinical signs/symptoms of NP-C were considered 'suspected NP-C' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI ≥70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 [4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores ≥70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis

    Consensus-based management protocol (CREVICE protocol) for the treatment of severe traumatic brain injury based on imaging and clinical examination for use when intracranial pressure monitoring is not employed

    No full text
    Globally, intracranial pressure (ICP) monitoring use in severe traumatic brain injury (sTBI) is inconsistent and susceptible to resource limitations and clinical philosophies. For situations without monitoring, there is no published comprehensive management algorithm specific to identifying and treating suspected intracranial hypertension (SICH) outside of the one ad hoc Imaging and Clinical Examination (ICE) protocol in the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST:TRIP) trial. As part of an ongoing National Institutes of Health (NIH)-supported project, a consensus conference involving 43 experienced Latin American Intensivists and Neurosurgeons who routinely care for sTBI patients without ICP monitoring, refined, revised, and augmented the original BEST:TRIP algorithm. Based on BEST:TRIP trial data and pre-meeting polling, 11 issues were targeted for development. We used Delphi-based methodology to codify individual statements and the final algorithm, using a group agreement threshold of 80%. The resulting CREVICE (Consensus REVised ICE) algorithm defines SICH and addresses both general management and specific treatment. SICH treatment modalities are organized into tiers to guide treatment escalation and tapering. Treatment schedules were developed to facilitate targeted management of disease severity. A decision-support model, based on the group's combined practices, is provided to guide this process. This algorithm provides the first comprehensive management algorithm for treating sTBI patients when ICP monitoring is not available. It is intended to provide a framework to guide clinical care and direct future research toward sTBI management. Because of the dearth of relevant literature, it is explicitly consensus based, and is provided solely as a resource (a “consensus-based curbside consult”) to assist in treating sTBI in general intensive care units in resource-limited environments

    Compilación de Proyectos de Investigacion de 1984-2002

    No full text
    Instituto Politecnico Nacional. UPIICS
    corecore