158 research outputs found

    Relative Fluid Stretching and Rotation for Sparse Trajectory Observations

    Full text link
    As most mathematically justifiable Lagrangian coherent structure detection methods rely on spatial derivatives, their applicability to sparse trajectory data has been limited. For experimental fluid dynamicists and natural scientists working with Lagrangian trajectory data via passive tracers in unsteady flows (e.g. Lagrangian particle tracking or ocean buoys), obtaining material measures of fluid rotation or stretching is currently only possible for trajectory concentrations that are often out-of-reach. To facilitate frame-indifferent investigations in unsteady and sparsely sampled flows, we present a novel approach to quantify fluid stretching and rotation via relative Lagrangian velocities. This technique provides a formal objective extension of quasi-objective metrics to unsteady flows by accounting for mean flow behavior. For extremely sparse experimental data, fluid structures may be significantly undersampled, and the mean flow behavior becomes difficult to quantify. We provide a means to maintain the accuracy of our novel sparse flow diagnostics in extremely sparse sampling scenarios, such as ocean buoy data and Lagrangian particle tracking. We use data from multiple numerical and experimental flows to show that our methods can identify structures beyond existing limits of sparse, frame-indifferent diagnostics, and exhibit improved interpretability over common frame-dependent diagnostics

    Will Spin-Relaxation Times in Molecular Magnets Permit Quantum Information Processing?

    Get PDF
    Using X-band pulsed electron-spin resonance, we report the intrinsic spin-lattice (T1) and phase-coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M=Ni and Mn, phase-coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3  μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications

    Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila

    Construction and test of a fine-grained liquid argon preshower prototype

    Get PDF
    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~10−3^{\mathrm{-3}} was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~μ\mum in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider

    Control of Alzheimer's Amyloid Beta Toxicity by the High Molecular Weight Immunophilin FKBP52 and Copper Homeostasis in Drosophila

    Get PDF
    FK506 binding proteins (FKBPs), also called immunophilins, are prolyl-isomerases (PPIases) that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP). Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Aβ toxicity. Towards this goal, we generated Aβ transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Aβ and increased lifespan in Aβ flies, whereas loss of function of FKBP52 exacerbated these Aβ phenotypes. Interestingly, the Aβ pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (−/−) cells have increased intracellular copper and higher levels of Aβ. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Aβ peptides

    Performance of an endcap prototype of the ATLAS accordion electromagnetic calorimeter

    Get PDF
    The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below 11%/E(GeV)11\%/\sqrt{E(\rm GeV)} and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\% over an extended area in the rapidity range of 2.2<η<2.92.2 < \eta <2.9. These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter

    Construction and test of a fine-grained liquid argon preshower prototype

    Get PDF
    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~10−3^{\mathrm{-3}} was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~μ\mum in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider

    Performance of a large scale prototype of the ATLAS accordion electromagnetic calorimeter

    Get PDF
    A 2 m long prototype of a lead-liquid argon electromagnetic calorimeter with accordion-shaped electrodes, conceived as a sector of the barrel calorimeter of the future ATLAS experiment at the LHC, has been tested with electron and pion beams in the energy range 10 to 287 GeV. A sampling term of 10%/root E(GeV) was obtained for electrons in the rapidity range 0 < eta < 1, while the constant term measured over an area of about 1 m(2) is 0.69%. With a cell size of 2.7 cm the position resolution is. about 4 mm/root E(GeV)
    • …
    corecore