2,613 research outputs found

    Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

    Full text link
    Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.Comment: 3 figure

    Effects of Intravenous Aspirin on Prostaglandin Synthesis and Kidney Function in Intensive Care Patients

    Get PDF
    The effects of intravenous acetylsalicylic acid (1.0 g bolus) on renal function and prostaglandin synthesis were evaluated in a prospective, controlled study in eight patients in an intensive care unit. Four of these patients had congestive heart failure. Administration of acetylsalicylic acid caused significant antidiuresis (−56%), antinatriuresis (−82%), renin suppression (−26%) and decreased GFR (−41%). All of these changes were completely reversible within 1-2 hours and tended to be more pronounced in the patients with congestive heart failure. Urinary excretion of prostaglandin E was depressed profoundly (−93%) and did not return to more than 45% of control 6 h after the administration of acetylsalicylic acid. We conclude that intravenous acetylsalicylic acid affects kidney function in a manner similar to other prostaglandin synthesis inhibitors. Its effects are, however, short-lived. The inhibition of urinary PGE2 excretion outlasts GFR depression, antidiuresis, antinatriuresis and renin suppression by several hour

    Effects of cover crops on phosphatase activity in a clay arable soil in the UK

    Get PDF
    The effect of five cover crop species (radish, buckwheat, vetch, phacelia and oat) alongside an un-cropped control, on the activity and persistence of soil acid and alkaline phosphatase activity was investigated. There was no effect on alkaline phosphatase activity at the time of cover crop incorporation (March), but by the point of maturation of the following oat cash crop (June) significant differences were detected, with the greatest activity following an oat cover crop. Acid phosphatase activity showed species-related significant differences at both sampling dates, with the magnitude increasing by June. Again, plots following an oat cover crop showed the greatest activity, followed by phacelia. This has shown that soil phosphatase enzymes are affected by the presence of a cover crop, that this effect is apparently species-dependent – and not dependent on the amount of biomass from the cover crop – and that cover crops could be a potential means to enhance soil phosphorus cycling

    The phase diagram of the square lattice bilayer Hubbard model: a variational Monte Carlo study

    Get PDF
    We investigate the phase diagram of the square lattice bilayer Hubbard model at half-filling with the variational Monte Carlo method for both the magnetic and the paramagnetic case as a function of the interlayer hopping t\u3c4 and on-site Coulomb repulsion U. With this study we resolve some discrepancies in previous calculations based on the dynamical mean-field theory, and we are able to determine the nature of the phase transitions between metal, Mott insulator and band insulator. In the magnetic case we find only two phases: an antiferromagnetic Mott insulator at small t\u3c4 for any value of U and a band insulator at large t\u3c4 . At large U values we approach the Heisenberg limit. The paramagnetic phase diagram shows at small t\u3c4 a metal to Mott insulator transition at moderate U values and a Mott to band insulator transition at larger U values. We also observe a re-entrant Mott insulator to metal transition and metal to band insulator transition for increasing t\u3c4 in the range of 5.5t < U < 7.5t. Finally, we discuss the phase diagrams obtained in relation to findings from previous studies based on different many-body approaches.\ua9 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

    Sensitivity of a Greenland ice sheet model to atmospheric forcing fields

    Get PDF
    International audiencePredicting the climate for the future and how it will impact ice sheet evolution requires coupling ice sheet models with climate models. However, before we attempt to develop a realistic coupled setup, we propose, in this study, to first analyse the impact of a model simulated climate on an ice sheet. We undertake this exercise for a set of regional and global climate models. Modelled near surface air temperature and precipitation are provided as upper boundary conditions to the GRISLI (GRenoble Ice Shelf and Land Ice model) hybrid ice sheet model (ISM) in its Greenland configuration. After 20 kyrs of simulation, the resulting ice sheets highlight the differences between the climate models. While modelled ice sheet sizes are generally comparable to the observed one, there are considerable deviations among the ice sheets on regional scales. These deviations can be explained by biases in temperature and precipitation near the coast. This is especially true in the case of global models. But the deviations between the climate models are also due to the differences in the atmospheric general circulation. To account for these differences in the context of coupling ice sheet models with climate models, we conclude that appropriate downscaling methods will be needed. In some cases, systematic corrections of the climatic variables at the interface may be required to obtain realistic results for the Greenland ice sheet (GIS)

    Acceptability of new formulations of Corn-Soy Blends and Lipid-based Nutrient Supplements in Province du Passoré, Burkina Faso

    Get PDF
    The objective of this study was to evaluate the acceptability of new formulations of six corn-soy blended flours (CSB) and six lipid-based nutrient supplements (LNS) with different quantities of milk and qualities of soy to be used for the treatment of moderate acute malnutrition (MAM). Furthermore, we wanted to explore the acceptability of foods currently used for the prevention and treatment of malnutrition in Burkina Faso to identify possible barriers that could affect the acceptability of the new formulations of supplementary foods. The study was carried out prior to a randomized controlled trial evaluating the effectiveness of these new formulations. The study involved an observed test-meal and a three-day take-home ration of the experimental food supplements to 6-30-months-old healthy children, followed by questionnaire-based interviews about the acceptability of these supplements. Interviews and focus group discussions were carried out to explore the acceptability of foods currently used for the prevention and treatment of malnutrition. The results suggest that both LNS and CSB products with different quantities of milk and qualities of soy are equally well accepted among healthy children in rural Burkina Faso based on general appreciation of the supplements and organoleptic properties. All experimental foods received good ratings and there was no significant difference between the foods. However, after the take-home ration, 58% of participants receiving CSB reported having left-overs at the end of the day compared to 37% (n=33) of the participants receiving LNS (p=0.004), suggesting that CSB was not as readily consumed as LNS. Yet, both CSB and LNS products were perceived as easy to administer and the frequency of feeding was estimated to be adequate. The study also found that similar foods, used for the prevention and treatment of malnutrition, were well appreciated in the study location. LNS were to a higher degree associated with medicine or foods with medicinal properties, but both LNS and CSB were perceived as beneficial to child health

    Oscillator neural network model with distributed native frequencies

    Full text link
    We study associative memory of an oscillator neural network with distributed native frequencies. The model is based on the use of the Hebb learning rule with random patterns (ξiμ=±1\xi_i^{\mu}=\pm 1), and the distribution function of native frequencies is assumed to be symmetric with respect to its average. Although the system with an extensive number of stored patterns is not allowed to get entirely synchronized, long time behaviors of the macroscopic order parameters describing partial synchronization phenomena can be obtained by discarding the contribution from the desynchronized part of the system. The oscillator network is shown to work as associative memory accompanied by synchronized oscillations. A phase diagram representing properties of memory retrieval is presented in terms of the parameters characterizing the native frequency distribution. Our analytical calculations based on the self-consistent signal-to-noise analysis are shown to be in excellent agreement with numerical simulations, confirming the validity of our theoretical treatment.Comment: 9 pages, revtex, 6 postscript figures, to be published in J. Phys.

    Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order

    Get PDF
    The influence of relativistic contributions to elastic electron deuteron scattering is studied systematically at low and intermediate momentum transfers (Q230Q^2\leq 30 fm2^{-2}). In a (p/M)(p/M)-expansion, all leading order relativistic π\pi-exchange contributions consistent with the Bonn OBEPQ models are included. In addition, static heavy meson exchange currents including boost terms and lowest order ρπγ\rho\pi\gamma-currents are considered. Sizeable effects from the various relativistic two-body contributions, mainly from π\pi-exchange, have been found in form factors, structure functions and the tensor polarization T20T_{20}. Furthermore, static properties, viz. magnetic dipole and charge quadrupole moments and the mean square charge radius are evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for publication in Phys.Rev.C Details of changes: (i) The notation of the curves in Figs. 1 and 2 have been clarified with respect to left and right panels. (ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a corresponding reference [48] (iii) At the end of the text we have added a paragraph concerning the quality of the Bonn OBEPQ potential

    The Concordance Cosmic Star Formation Rate: Implications from and for the Supernova Neutrino and Gamma Ray Backgrounds

    Full text link
    We constrain the Cosmic Star Formation Rate (CSFR) by requiring that massive stars produce the observed UV, optical, and IR light while at the same time not overproduce the Diffuse Supernova Neutrino Background as bounded by Super-Kamiokande. With the massive star component so constrained we then show that a reasonable choice of stellar Initial Mass Function and other parameters results in SNIa rates and iron yields in good agreement with data. In this way we define a `concordance' CSFR that predicts the optical SNII rate and the SNIa contribution to the MeV Cosmic Gamma-Ray Background. The CSFR constrained to reproduce these and other proxies of intermediate and massive star formation is more clearly delineated than if it were measured by any one technique and has the following testable consequences: (1) SNIa contribute only a small fraction of the MeV Cosmic Gamma-Ray Background, (2) massive star core-collapse is nearly always accompanied by a successful optical SNII, and (3) the Diffuse Supernova Neutrino Background is tantalizingly close to detectability.Comment: Improved discussion. Version accepted for publication in JCA
    corecore