Accepted Manuscript

Title: Acceptability of new formulations of Corn-Soy Blends and Lipid-based Nutrient Supplements in Province du Passoré, Burkina Faso

Author: Ann-Sophie Iuel-Brockdorf, Tania Aase Dræbel, Christian Fabiansen, Bernardette Cichon, Vibeke Brix Christensen, Charles Yameogo, Christian Ritz, Mette Frahm Olsen, Henrik Friis

PII:	S0195-6663(15)00204-4
DOI:	http://dx.doi.org/doi:10.1016/j.appet.2015.04.058
Reference:	APPET 2537
To appear in:	Appetite
Received date:	20-11-2014
Revised date:	15-4-2015
Accepted date:	19-4-2015

Please cite this article as: Ann-Sophie Iuel-Brockdorf, Tania Aase Dræbel, Christian Fabiansen, Bernardette Cichon, Vibeke Brix Christensen, Charles Yameogo, Christian Ritz, Mette Frahm Olsen, Henrik Friis, Acceptability of new formulations of Corn-Soy Blends and Lipid-based Nutrient Supplements in Province du Passoré, Burkina Faso, *Appetite* (2015), http://dx.doi.org/doi:10.1016/j.appet.2015.04.058.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Acceptability of new formulations of Corn-Soy Blends and Lipid-based Nutrient Supplements in
2	Province du Passoré, Burkina Faso
3	
4	Ann-Sophie Iuel-Brockdorf ^{1,2} , Tania Aase Dræbel ³ , Christian Fabiansen ² , Bernardette Cichon ^{1,2} , Vibeke Brix
5	Christensen ^{2,4} , Charles Yameogo ^{2,5} , Christian Ritz ¹ , Mette Frahm Olsen ⁶ , Henrik Friis ²
6	
7	¹ Médecins Sans Frontières – Denmark, Dronningensgade 68, 3. 1420 Copenhagen, Denmark (A luel-Brockdorf MIH,
8	ai@msf.dk; B Cichon, MSc, <u>Bernardette.Cichon@london.msf.org</u> ; V Christensen DMSc, <u>vb@msf.dk</u>)
9	² Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C,
10	Denmark (A Iuel-Brockdorf MIH, <u>ai@msf.dk</u> ; C Fabiansen MD, <u>chfr@nexs.ku.dk</u> ; B Cichon, MSc,
11	Bernardette.Cichon@london.msf.org; C Ritz PhD, ritz@nexs.ku.dk; Prof H Friis PhD, hfr@nexs.ku.dk)
12	³ Department of International Health, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej
13	3, 2200 Copenhagen, Denmark (T. A Dræbel PhD, Lecturer, taniadraebel@gmail.com)
14	⁴ Department of Paediatrics, Righospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark (V Christensen DMSc,
15	vb@msf.dk,)
16	⁵ Research Center in Biological, Food and Nutritional Sciences UFR-SVT/University of Ouagadougou, 03 BP 7131
17	Ouagadougou, Burkina Faso (C Yameogo MSc, <u>yamway@yahoo.fr</u>)
18	⁶ The Nordic Cochrane Centre, Rigshospitalet dept. 7811, Blegdamsvej 9, 2100 Copenhagen, Denmark (M. Frahm
19	Olsen, PhD, meosmail@gmail.com)
20	XO
21	
22 23	Address for correspondence: Ann-Sophie luel-Brockdorff
24	Department of Nutrition, Sports and Exercise
25	University of Copenhagen,

- University of Copenhagen, 25
- 26 Rolighedsvej 30,
- 1958 Frederiksberg C, Denmark 27
- 28 Telephone: +45 41 77 74 23
- 29 Email: ai@msf.dk
- 30

31 Highlights

- LNS and CSB products with different milk-quantity and soy-quality are equally well accepted on
 organoleptic parameters
- CSB was not consumed as readily as LNS
- Both CSB and LNS products were perceived as easy to administer
- Similar CSB and LNS products used in the study location were perceived as beneficial to child health
- LNS were to a higher degree associated with medicine or foods with medicinal properties
- 39
- 40

41 Abstract

The objective of this study was to evaluate the acceptability of new formulations of six corn-soy blended 42 43 flours (CSB) and six lipid-based nutrient supplements (LNS) with different quantities of milk and qualities of soy to be used for the treatment of moderate acute malnutrition (MAM). Furthermore, we wanted to 44 45 explore the acceptability of foods currently used for the prevention and treatment of malnutrition in Burkina Faso to identify possible barriers that could affect the acceptability of the new formulations of 46 47 supplementary foods. The study was carried out prior to a randomized controlled trial evaluating the 48 effectiveness of these new formulations. 49 The study involved an observed test-meal and a three-day take-home ration of the experimental food 50 51 supplements to 6-30-months-old healthy children, followed by questionnaire-based interviews about the

52 acceptability of these supplements. Interviews and focus group discussions were carried out to explore the

- 53 acceptability of foods currently used for the prevention and treatment of malnutrition.
- 54

55 The results suggest that both LNS and CSB products with different quantities of milk and qualities of soy are 56 equally well accepted among healthy children in rural Burkina Faso based on general appreciation of the 57 supplements and organoleptic properties. All experimental foods received good ratings and there was no 58 significant difference between the foods. However, after the take-home ration, 58% of participants receiving 59 CSB reported having left-overs at the end of the day compared to 37% (n=33) of the participants receiving 60 LNS (p=0.004), suggesting that CSB was not as readily consumed as LNS. Yet, both CSB and LNS products were perceived as easy to administer and the frequency of feeding was estimated to be adequate. The study 61 62 also found that similar foods, used for the prevention and treatment of malnutrition, were well appreciated 63 in the study location. LNS were to a higher degree associated with medicine or foods with medicinal 64 properties, but both LNS and CSB were perceived as beneficial to child health.

65

66 Keywords

Acceptability, supplementary food, Lipid-based Nutrient Supplement, Corn Soy Blend, malnutrition,
 moderate acute malnutrition

69 Introduction¹

70 Moderate acute malnutrition (MAM) affects 33 million children worldwide and is a major global health

71 problem as it results in increased morbidity and mortality and delayed cognitive development(M. M. Black

72 et al., 2008; Black et al., 2013; R. E. Black et al., 2008). Yet, there is presently no consensus on

r3 supplementary foods for the management of MAM. According to the World Health Organization, (WHO),

74 who are currently reviewing their guidelines, more evidence is needed before clear guidelines can be

75 developed (World Health Organization, 2012).

In recent years different approaches have been introduced for the management of MAM using fortified 76 77 blended flours, such as enhanced versions of corn-soy blend (CSB) or lipid-based nutrient supplements 78 (LNS) (Lazzerini et al., 2013). These supplementary foods vary in terms of cost, taste, texture, shelf life, how 79 they are used as well as in nutritional composition. These are all factors that may affect the acceptability and thereby the beneficial effect of a nutritional intervention. Acceptability refers to how foods are 80 81 perceived and acknowledged in terms of recommended quantity consumed, the perceived benefits and/or 82 undesirable effects, ease of use as well as organoleptic qualities of the foods based on test meals and/or 83 take-home rations for a minimum of seven days as described in previous studies(Adu-Afarwuah et al., 2008; 84 Bahwere et al., 2009; Rowe et al., 2008).

Soy and milk are key ingredients in existing supplementary foods for children with MAM. Soy is used to
obtain high levels of protein. Yet unrefined soy contains anti-nutrients and may produce flatulence and
abdominal discomfort due to the fermentation of indigestible oligosaccharides. Consequently this may
affect the acceptability (Suarez et al., 1999). As an alternative, soy isolate can be used. It has an increased
protein content and an enhanced protein digestibility as well as less anti-nutrients and indigestible
oligosaccharides (Björck et al., 1983). Milk may have a beneficial impact on growth (Grillenberger et al.,
2003; Hoppe et al., 2008), it contains high quality protein and may furthermore influence the acceptability,

¹ Abbreviations:

MAM, moderate acute malnutrition; CSB, corn-soy blend; LNS, lipid-based nutrient supplement; WHO, World Health Organization; DS, dehulled soy; SI, soy isolate; DSM, dry-skimmed milk; MUAC, mid-upper arm circumference

as it provides a more sweet and creamy taste (Hoppe et al., 2008). However, both soy isolate and milk are
more expensive ingredients.

94 Only a few studies have compared the acceptability of CSB vs LNS products and found them equally well 95 accepted. However, LNS were less likely to be left-over (Flax et al., 2010) and CSB was more likely to be 96 shared (Flax et al., 2010; Wang et al., 2013). Acceptability of soy vs. milk-based foods have so far also only 97 been compared in a few studies, and only in LNS products, where both types of foods were reported to be 98 well-accepted by the target population (Kuusipalo et al., 2006; Matilsky et al., 2009). One study compared 99 and assessed the acceptability of LNS products with and without milk and found that milk did not affect 100 acceptability (Owino et al., 2014). This was also the case for a study on soy- and rice-based complementary foods with and without milk powder (Paul et al., 2008). However, to our knowledge, no studies have 101 102 assessed and compared the acceptability of CSB vs LNS products with different quantities of milk and 103 different qualities of soy for the treatment of MAM.

Prior to a randomized controlled trial evaluating the cost-effectiveness of 12 different new formulations of
CSB and LNS with different quantities of milk and soy qualities for the management of MAM
(ISRCTN42569496 at http://www.controlled-trials.com), we conducted a study to evaluate the acceptability
of these new formulations. Furthermore, we wanted to explore the acceptability of foods currently used in
the study location for the prevention and treatment of malnutrition, to identify possible barriers that could
affect the acceptability of the new formulations of supplementary foods.

110

111 Methodology

The study took place in the department of Gonponsom, Yako health district, Province du Passoré in 112 113 northern Burkina Faso in January-February 2013. The prevalence of MAM and SAM in the area were 9% and 1.4%, respectively ("Ministere de la Santé, Burkina Faso, Direction de la Nutrition. Rapport Enquete 114 115 Nutritionnelle Nationale," 2013). Regular preventive food distributions by WFP for children 6-36 months-116 old, with either CSB or ready-to-use foods, depending on availability, were carried out at the local health 117 centres in relation to routine mother-child healthcare activities. A combination of quantitative and 118 qualitative methods was applied to evaluate and compare the extent of acceptability of the new products 119 (part I) and to capture the multitude of views on supplementary foods currently used for the prevention 120 and treatment of malnutrition in the study location(part II).

121 Methodology Part I: Acceptability of the new supplementary foods

122 **1.1** Participants

A convenience sample of 180 children aged 6-30 months who had initiated complementary feeding, and with mid-upper arm circumference (MUAC) >125 mm were identified by local community health workers. Exclusion criteria were children with moderate or severe acute malnutrition by MUAC, oedema, history of peanut allergy, or who had severe illness requiring hospitalisation or who were registered in a nutritional program. An informed consent form was signed or thumb printed by caretakers prior to participation.

128 1.2 Design

129 Children were randomised to one of the 12 different supplements, i.e. 15 children/group, according to a 130 blocked randomisation list with varying block sizes using http://www.randomization.com. Each of the 12 131 supplementary foods was masked with a one-letter code and participants and all members of the research 132 team were blinded to the soy and milk content of the supplementary foods, but not to the main type of 133 food (CSB or LNS).

The study included an observed test meal (visit 1) and a three-day take-home test (visit 2) with one of the 134 135 12 experimental supplementary foods per participant. Both visits included questionnaires evaluating the 136 acceptability of the new foods in terms of organoleptic qualities and perceived ease of use as well as 137 adherence to recommendations. The take-home ration was included, because it was assumed that 138 acceptability could increase over time. Other studies have provided a take-home ration for minimum a week(Hess et al., 2011, Wang et al., 2013). However, in this study, children were not malnourished and a 139 supplement high in calories, fat and protein for a longer period of time could potentially have adverse 140 141 effects. Therefore, it was decided to limit the take-home ration to three days.

142 1.3 Intervention

The 12 supplementary foods included six CSB and six LNS products, with either dehulled soy (DS) or soy 143 isolate (SI) and with 0%, 20% or 50% of total protein as dry skimmed milk (DSM). All products were 144 145 manufactured by GC Rieber Compact A/S (Bergen, Norway) and had similar micronutrient content provided by a pre-mix of vitamins and minerals according to a WHO Technical Note on supplementary foods for the 146 management of MAM (World Health Organization, 2012) (Table 1). A daily ration of LNS (92 g) and CSB 147 148 (120 g) provided 500 kcal per child. LNS products were packed in 92 grams foil sachets containing a daily 149 ration and did not require any preparation prior to consumption. CSB products were packed in foil bags and 150 required cooking to become an edible porridge. The home ration of three daily rations of 120 gram CSB per 151 day was dosed and provided in neutral local plastic bags. Mothers were instructed to prepare the porridge 152 with a CSB-water volume ratio of either 1:3 or 1:4, depending on the desired viscosity. It was advised to

- serve the porridge in three meals per day, giving 40 gram of CSB (167 kcal) per meal. Individual dose cups
- 154 (per meal) were provided to all participants receiving the CSB products.

155

Accepted Manuschik

156 Observed test meal (visit 1)

Participants were offered either 40 g of one of the CSB products corresponding to 1/3 of the daily ration or 157 158 1 sachet of the LNS products corresponding to a full daily ration. The ration was served by two health workers between 8 am and 12 pm. Caretakers and children were divided into groups, placed in a quiet 159 160 area, and served one group at a time with a maximum of four children per group at a time. Children in the CSB groups were served first and caretakers were showed how to prepare the porridge hygienically. 161 162 Caretakers were also instructed to wash their hands before feeding the child. All children were offered 163 water during the meal and there were no restrictions on breastfeeding prior to or during the test. 164 Breastfeeding 30 minutes prior to serving was registered.

After 30 minutes of observed consumption, caretakers were asked to evaluate the supplementary foods in terms of child appreciation, general perception, taste, colour, odour and texture according to their child's reaction and own perception, based on a 5-point hedonic scale, where 1=dislike very much, 2=dislike, 3=neither like nor dislike, 4=like and 5=like very much. The scale was illustrated in a series of human face symbols with varying degrees of smile or discontent. This is a method previously used to measure food acceptability in illiterate populations (Cohuet et al., 2012; Hess et al., 2011). If children were not able to finish the ration within the 30 minutes, caretakers were asked to estimate the quantity of left-overs.

172 Three day take-home test (visit2)

After the observed test, participants were given a three-day ration to take home and asked to come back the following week to complete the final questionnaire, which included the same questions as in the observed test. Additionally questions related to acceptability and management of the supplementary foods were included. These questionnaires were developed together with an experienced local research assistant fluent in the local language, Mooré, and familiar with the local culture. She also assisted in training and supervision of the two health workers carrying out the serving and the questionnaires on all participants.

179

180 Methodology Part II: Perceptions of foods currently used in the study location

Individual interviews and focus group discussions (FGD) were carried out with caretakers of young children
to explore the acceptability of foods currently used for the prevention and treatment of malnutrition in the
study location.

184 2.1 Participants

Participants for this part of the study included both caretakers from the quantitative part of the study and
other caretakers of young children. The majority of the participants had personal experience with foods

used for the prevention and treatment of malnutrition, having young children that had either been treatedfor malnutrition or had benefitted from the regular food distributions at the health centres.

189 2.2 Design

190 Purposive sampling was used to ensure that data was as diverse as possible in terms of age and number of 191 children of the caretakers. The number of interviews/FGDs was based on the principle of data saturation, 192 including new participants as long as new themes emerged. The aim was to achieve analytical 193 generalization, so that the emerging information would be comprehensive, complete, saturated and would 194 account for deviant cases. The interviews and FGDs were carried out in Mooré by two research assistants 195 trained for the purpose by the first author and a phenomenological approach was applied as described by 196 Kvale (Kvale, 1996). The interviews and FGDs took place at the health centre or in the village of the 197 participants in a secluded area, and lasted between 20-45 minutes. All interviews and FGDs were carried 198 out following a semi-structured interview guide using open-ended questions within topics related to the 199 perception of treatment of malnutrition in the study location. The interview guide was carefully discussed 200 and developed with the two research assistants prior to the study, to ensure semantic coherence and 201 relevance to the context. All interviews and FGDs were recorded, transcribed and translated from Mooré to 202 French by the two research assistants and from French to English by the first author.

203 Data analysis

204 Quantitative data were doubly entered into Epidata 3.1 Software (Epidata Association, Odense, Denmark) 205 and analyzed using Stata 12 (StataCorp, College Station TX, USA). Baseline characteristics, performance and 206 management results of questionnaires from the observed and take-home tests were analyzed using chi-207 square tests, initially considering contingency tables including all 12 supplementary foods. In addition, 208 pairwise comparisons for 2-by-2 tables were carried out separately within the CSB and LNS groups, 209 respectively. In case comparisons within these two groups were non-significant, an overall comparison was 210 made between CSB and LNS. Differences in frequency of feeding between CSB and LNS were analyzed using 211 analysis of variance. Differences in ratings of the organoleptic acceptability between supplementary foods 212 and visits were analyzed using linear mixed models including product-visit interactions as fixed effects and 213 participant-specific random effects. Additionally, all models were adjusted for age and sex. Likelihood ratio 214 tests were used to evaluate product-visit interactions and, if these were non-significant, separate product 215 and visit effects were estimated. Bonferroni adjustment was applied whenever multiple p-values were 216 considered in an analysis. A significance level of 0.05 was used.

Interviews and FGD were analyzed applying qualitative content analysis as outlined by Graneheim and
Lundman (2004). First, each interview and FGD was kept intact and read through several times to obtain a

general sense of the content, searching for common themes and identifying manifest and latent content.
From the text, condensed meaning units or portions of the text that were connected to a central meaning

- were formed and coded for that specific meaning. For example, if caretakers were talking about the
- abilities of supplementary foods, the specific ability would be coded (i.e; *foods provide health*). These codes
- 223 were then assimilated into categories (i.e; abilities of supplementary foods) and from these, themes
- 224 emerged (i.e; perceptions of supplementary foods). In line with Graneheim and Lundman, meaning units,
- codes and categories could fit into more than one theme. Finally, findings from each of the interviews/FGDs
- were compared with the aim of exploring similarities, differences and patterns. The analysis was carried out
- with a focus on the subject and the context and an emphasis on differences and similarities found in the
- 228 data, which is characteristic for the direction of qualitative content analysis described by Graneheim and
- Lundman. This approach rests on the underlying assumption that "*reality can be interpreted in many*
- 230 *different ways and the understanding is dependent on subjective interpretation*". Consequently, a certain
- degree of interpretation is involved in the analysis of data (Graneheim and Lundman, 2004).

232 Ethical approval

- As part of a larger study, this study was approved by the Ethical Committee for Health Research in Burkina
- Faso (2012-8-059) and consultative approval was obtained from the Danish National Committee on
- Biomedical Research Ethics (1208204).

236 Results

237 Participants characteristics

- 180 children and their caretakers were included in the study during a period of four weeks. Randomization
- resulted in baseline equivalence. The mean age of the children were 14 months (SD +5), 62% (n=112) were
- 240 males and 95% (n=171) (95%CI: 92-98%) were breastfed at inclusion. 82% (n=146) were reported healthy at
- inclusion (95%CI: 76-87%), while 15% (n= 27) and 3% (n=6) reported having light or moderate illness
- respectively (95%CI: 10-20% and 0.7-6% respectively). All children except one completed both visits of the
- 243 study (Table 2).
- 244 For the qualitative part of the study, four FGDs and 11 individual interviews were carried out with a total of
- 245 38 caretakers, who were all biological mothers of the children. The mean (SD+) age of the caretakers was
- 246 29.1 years (SD+8.3), the mean quantity of children per caretaker was 3.6 (SD+1.9) and number of
- household members was 12.8 (SD+6.5). 84% (n=32) of the caretakers had no education, 11% (n=4) had
- attended primary school and 5% (n=2) had attended secondary school.

249 General appreciation and organoleptic qualities of the new formulations

- 250 In Table 3 organoleptic ratings of all products are listed. In terms of caretaker's general perception and the 251 organoleptic attributes related to odor and color of the supplementary foods, results show mean ratings 252 between 3.8 and 4.1. There was no difference between the supplements, neither in ratings, nor how they 253 were rated from visit 1 to visit 2. Similarly, no difference was found between the supplements in terms of 254 rating of taste. However, there was an increase in this rating from visit 1 to visit 2 (0.23, 95% CI: 0.11-0.35, p=<0.001), which was also seen in the mean rating of the child's perceived appreciation of the supplements 255 256 (0.18, 95%CI: 0.04-0.31, p=0.012). Ratings of texture changed from visit 1 to visit 2 (p= 0.01), however only 257 for some of the products: For CSB DS 0% (1) ratings increased from visit 1 to visit 2, from 3.5 to 4.0 (95% 258 CI:3.2-3.69 and 95%CI: 3.7-4.22, respectively, p= 0.012). For LNS SI 0% (10), the rating decreased from visit 259 1 to visit 2. However this difference was not significant after Bonferroni adjustment (P=0.12).
- 260

261 Observed test meal – consumption and leftovers

- After 30 minutes of consumption of the supplementary foods, 78% (n=137) of participants had leftovers,
- with no marked differences between the 12 groups (p=0.21). The total mean of participants breastfeeding their children prior to the test meal were 55% (n=92), and presented no clear difference between the
- 265 products (p=0.58)
- 266 52% (n=73) of participants estimated to have half of the ration left, while 32% (n=45) estimated having half
- 267 of the meal left. No clear differences between the 12 supplementary foods were found (p=0.12), despite
- the fact that the ration of CSB (40 g/167 kcal) corresponded to 1/3 of a daily ration, while the ration of LNS
- 269 (92 g/500 kcal) corresponded to a full daily ration. Regardless of the large proportion of children having
- 270 left-overs, 74% (n=133) of caretakers said that the quantity to consume was adequate, with no clear
- 271 difference between the products (p=0.47).
- 272

273 Take home test – consumption and leftovers

- The number of caretakers reporting left-overs during the take home test was different between the 12
- supplementary foods (p=0.037) and between the CSB and LNS products (p=0.004) (**Table 4**). In the LNS
- group, 37% (n=33) reported having left-overs at the end of the day, compared to 58% (n=52) of caretakers
- receiving CSB. In the CSB groups, 46% (n=23) and 44% (n=22) of caretakers reported having less than half
- or half of the daily ration left, respectively vs 53% (n=17) and 34% (n=11) of caretakers in the LNS groups,

- respectively. 10% (n=5) of caretakers in the CSB groups reported having more than half of the daily ration
 left at the end of the day vs 13% (n=4) in the LNS groups.
- Out of the 85 caretakers reporting left-overs, 51% (n=42) stated that another under 5-year-old child ate
- what was left. 27% (n=22) said that the remains were eaten by the mothers, 15% (n=12) said that it was
- eaten by an older child (> 5 years), while 7% (n=6) said that it was either thrown out or other.
- 284

285 Administration of the supplementary foods

- 286 The reported mean frequency of feeding during the take home test was higher for CSB, than for LNS (**Table**
- 287 **5**). When asked how they perceived the number of times they had been feeding their children with the
- supplement per day, 83% (n=150) of caretakers said that it had been adequate, while 14% (n=25) thought
- that it had not been frequent enough. Only 2% (n=4) thought that it had been too much. There was no
- 290 difference between the 12 supplementary foods (*P*=0.23). The majority of the caretakers (96%) said that
- 291 the administration of the products was easy, and there was no difference in the perception of
- administration neither between each of the products nor between the CSB and LNS groups. In the CSB
- 293 groups, 85% (n=74) of caretakers reported that they preferred a less viscous porridge with a CSB:water-
- ratio of 1:4, compared to 15% (n=13) who said the preferred a CSB:water-ration of 1:3.
- 295

296 Symptoms of illness after consumption

- 297 When asked if the child had been ill following consumption of the supplementary foods, 8% of all
- 298 caretakers (n=15) reported illness, with no significant difference between the 12 supplementary foods
- 299 (P=0.71). Of the reported illnesses 47% (n=7) was diarrhea, while 13% (n=2) and 7% (n=1) were vomiting
- and rash respectively. The remaining 33% (n=5) were reported as other symptoms.

301 **Foods used for the treatment and prevention of malnutrition in view**

302 Foods used for the prevention and treatment of malnutrition in the study location included both LNS and 303 CSB products depending on availability. LNS were used for the treatment of severe acute malnutrition, 304 while both LNS and CSB were used for the treatment of MAM and regularly distributed during routine 305 maternal and child healthcare services for the prevention of malnutrition. Both types of foods were perceived as different from traditional/local foods and referred to as "Yombdo" in Mooré which means 306 307 "wrinkled skin". This is also a word used to describe malnutrition; the largest ethnic group in the study setting, the Mossi people, is known to have a metaphoric and metonymic style of reasoning when defining 308 309 and categorizing an illness. This way, cause, effect and cure are often grouped together in concrete images, 310 which is used as a way of conceptualizing an illness (Sjaak van der Geest and Meulenbroek, Adèle, 1993).

There were different perceptions of CSB and LNS in terms of the origin of the foods and their respective abilities. Although the ingredients were recognizable and to a large extent familiar in the study location, interviewees emphasized that LNS products were different from local foods. Many believed that it came from the Western part of the world and this was associated with high effectiveness.

315

"If it is this food [LNS], even only with two sachets, the child will be revitalized very fast, but with our local foods, even if you make" Tô" [local dish of staples] of millet for the child, you will not see the same results. So you cannot say that it is the same thing, it is not at all the same thing"

(20-year-old mother of one)

322 "We think it [LNS] is peanut butter mixed with oil, but we still think it is the food of the white
323 people"

324

320

321

(FGD village of Ounon)

CSB products appeared to be more familiar to the caretakers, as the ingredients and the composition of the
 foods were perceived as similar to local foods and many caretakers thought that CSB could be produced
 locally. Nevertheless, they believed that the preparation was different and that external aid had been used

to refine the foods so that they could be beneficial to the health of the children.

329

330 "The appearance is a mix of cereals, so this mix must be a combination that tries to improve
331 the health of children..... I don't know how they make it but I think that it [CSB] is based on

332	our local foods. I think that the composition of the foods includes some of our local crops, and
333	then they have improved it so that it is good for children"
334 335 336	(48-year-old mother of six)
337	"You can find healthy foods here but it depends on how you combine it. The white people can
338	transform millet to other things which we cannot. Perhaps the basic building blocks are here,
339	but they have their way of preparing it [CSB]. Based on our crops, they are able to make
340	beans, peanut, with lots of vitamins, but we do not know how to do that. Only they know
341	what they are doing and then they send it to us"
342 343	(40-year-old mother of seven)
344	"Yes it is possible [that CSB can be produced here], the flour used looks like maize flour"
345	(FGD village of Ounon)
346	
347	The perceived abilities of the products also differed. While the LNS products were strongly associated with
348	medicine or perceived as having medicinal properties, no such associations were made for CSB at any point.
349	Some caretakers perceived LNS as being medicine while others perceived them as being foods to improve
350	the child's condition during illness. Finally, some caretakers perceived LNS as being both foods and
351	medicine.
352 353	we believe that it [LNS] is a drug, a drug that helps children very much This is the drug
354	that saved my child when he was sick"
355 356	(40-year-old mother of six)
357 358 359	"It [LNS] ensures an improvement of his [the child's] condition this is because it is food" (30-year-old mother of four)
360 361 362	"I believe that it [LNS] is both, a drug and food to treat children with malnutrition" (18-year-old mother of one)
363	Overall there was a perception that foods used for the prevention and treatment of malnutrition were
364	something that ensured the health of children.
365 366	We admire this food that treats our children it provides health (38-year-old mother of five)
367 368	These foods are foods for the health

369 370	(48-year-old mother of six)
371	Furthermore, there was a very strong confidence in the foods in terms of their abilities to provide health.
372	The foods are powerful because when eating these foods, the child becomes healthy and
373	strong in no time
374 375	(FGD Ounon)
376	This confidence seemed to be very fundamental. A mother whose child was having diarrhea after
377	consuming LNS products replied the following after being asked if she continued to give the child the foods;
378	"How can I do differently? This is what will make him recover"
379	(18-year-old mother of one)
380	
381	
382	Discussion
383	The primary objective of this study was to evaluate the acceptability of 12 new formulations of
384	supplementary foods for the treatment of MAM with different milk quantity and soy quality. Moreover, we
385	wanted to explore the acceptability of foods currently used for the prevention and treatment of
386	malnutrition in the study location to identify possible barriers for acceptability of new supplementary
387	foods.
388	All the new supplementary foods received high ratings in terms of caretakers' appreciation, the perceived
389	appreciation by the children and on organoleptic properties. There was no indication that the level of milk
390	or the quality of soy had an impact on these parameters and overall there was little variability in the
391	hedonic ratings. However, this result may not necessarily be conclusive as participants may have been
392	reluctant to give poor ratings, as suggested in other studies (Adu-Afarwuah et al., 2011; Young et al., 2010).
393	Yet, interestingly, ratings increased on certain parameters after the supplementary foods had been tested
394	at home. Children's food preferences are shaped by their early experience, and repeated exposure to foods
395	in a safe and supportive environment increases food preference and acceptance (Birch and Marlin, 1982;
396	Ventura and Worobey, 2013). The fact that the children were exposed to the supplementary foods more
397	than once and that they were fed in their home environment may have increased the acceptability of the
398	foods after the first visit, although the duration of home-feeding was shorter compared to other studies.

Acceptability of foods in terms of organoleptic preferences is difficult to assess in small children: study findings often reflects the taste and food preferences of the caretakers, which may be different from those of the child and which may not even reflect the real opinion, if participants engage in socially desirable responding. Therefore looking at the quantity of left-over may be a useful indicator of acceptability (Adu-Afarwuah et al., 2011; Flax et al., 2010; Owino et al., 2014).

404 In this study, the majority of caretakers estimated to have half or less of the ration served left following the 405 observed test meal in all groups. In other studies, it has been suggested that acceptability is reached if 50-406 75% of the meal is consumed (Adu-Afarwuah et al., 2011; Owino et al., 2014). However, as leftovers in this 407 study were based on caretakers' estimation, it may be difficult to compare these findings with other 408 studies, where leftovers have been weighed and calculated by observers (Adu-Afarwuah et al., 2011, Hess et 409 al., 2011). Yet, it is unexpected that the proportion of participants having leftovers was similar in all groups due to the difference in ration served: In the LNS groups a full daily ration of LNS was served (92 g), while in 410 the CSB groups, the meal was rationed into single meals (40 g). It would therefore have been more likely 411 412 that participants in the LNS groups had leftovers, as they were served a full day's ration in a single meal as oppose to participants in the CSB groups who were served 1/3 of a full days ration. Additionally, more 413 414 participants in the CSB groups reported left-overs, after having tested the supplementary foods for three days at home, compared to participants in the LNS groups. These findings suggest that the proposed single 415 416 meal portion size and the recommended daily ration of CSB were difficult for small children to consume 417 and therefore, that the CSB was not consumed as readily as the LNS. This is in line with a previous study 418 (Nackers et al., 2010) comparing the effectiveness of traditional CSB with a therapeutic LNS product 419 (Plumpy'Nut[®], Nutriset). It should be noted that no restrictions on breastfeeding were given prior to eating 420 the supplementary foods, which may have influenced the appetite of the children and their ability to consume the ration served. However, these foods are only supplements to the diet and in order not to 421 422 interfere with current breastfeeding practices, normal breastfeeding practices were encouraged and no 423 restrictions were made at any point during the study.

The difference in leftovers between CSB and LNS is likely due to the fact, that CSB products are less energydense and have high bulkiness and volume compared to the high energy dense and low volume LNS products (de Pee and Bloem, 2009). This means that children receiving CSB have to eat several times the mass of food as children treated with LNS (LaGrone et al., 2012). For this reason, smaller and more frequent meals are recommended for less energy-dense diets, in order not to exceed the gastric capacity of the children (Brown et al., 1995). In our study, the mean frequency of feeding for the CSB products was 2.8 meals/day, providing 40 g of CSB per meal and an increase of recommended feeding frequency could be

considered. However, recommending higher frequency of feeding with CSB may be problematic since 431 432 preparation of the porridge is time-consuming and requires material for cooking in contrast to LNS which 433 can be eaten directly out of the package. Increasing the frequency of feeding for a longer period of time 434 with meals that require a long preparation may not be sustainable and could influence the acceptability in a 435 context where the working day of the caretaker of children is already overloaded and resources are sparse. 436 Surprisingly, the majority of caretakers reported the administration of the supplementary foods to be easy, regardless of the type of product (> 98%) and despite the fact that the frequency of feeding was higher for 437 438 CSB than for LNS. In addition the frequency of feeding was perceived as adequate (83%) and only 2% of 439 caretakers said that it was too high. Yet, the duration of the take-home test was short compared to other 440 studies and to the average treatment duration of MAM. Consequently, the administration of the 441 supplementary foods may have been perceived less burdensome than if supplementation had continued 442 for a longer period of time.

The qualitative data suggests that similar foods used for the prevention and treatment of malnutrition were
well appreciated in the study location, although especially LNS were considered different from local foods.
LNS were associated with both medicine or with foods with medicinal properties while no such reference
were made for CSB, although it was considered to have been refined and to be beneficial to child health.

447 Other studies have shown that in Niger, LNS were mainly considered as medicine (Cohuet et al., 2012), while in Malawi both CSB and LNS were considered as foods (Flax et al., 2009) as well as medical 448 449 treatments (Matilsky et al., 2009). The perception of foods used for the prevention and treatment of 450 malnutrition as having medicinal properties is likely to have an impact on the acceptability. It may confirm 451 the condition of the child as being ill, which enhances the care and adherence to the treatment and can 452 promote the good intentions of the mother to ensure the health of her child (Whyte et al., 2002). These are 453 important factors that could contribute to the acceptability of the supplementary foods, but would need to 454 be explored further.

Both types of products were perceived as beneficial to child health and there was a high degree of
confidence in the abilities of the foods, as they were referred to as "powerful" while others said that they
made children "strong in no time". Whyte et al has suggested that the efficacy of medical treatments is
much related to the provenance of the product (Whyte et al., 2002). The fact that the foods were perceived
to be developed or refined by "white people", could have enhanced their perceived efficacy in this context,
where there seemed to be a high confidence in western medicine. This may not be applicable to other
contexts.

We believe that the findings from the qualitative part of the study supports and qualifies the findings from the quantitative part: The fact that similar foods currently used in the study location for the prevention and

- 464 treatment of malnutrition were well appreciated and perceived as beneficial to child health, whether they
- 465 were considered as medicine, foods with medicinal properties or just refined foods, could explain the high
- 466 level of acceptability of the new formulations.

467 Limitations

468 Still, we also acknowledge the limitations of the study. The relatively small sample size could be a limitation inasmuch as only few differences were found to be significant. Thus, the study lacked power to produce but 469 470 few claims for individual acceptability outcomes. A larger sample size may have enabled us to find more 471 significant differences between products. Yet, it was sufficient to demonstrate an overall proof of concept. 472 Another limitation is that the quantity of left-overs was estimated by the caretakers and not weighed and 473 calculated by observers as has been done in other studies. For the qualitative part of the study, the 474 duration of the interviews and FGDs were relatively short and time to create trust between participants and 475 the interviewers was therefore limited. Furthermore, community-sensitisation and communication 476 regarding the project had been on-going prior to the interviews/FGDs and the non-local research team had 477 been introduced to the local community. This may have influenced participants to respond more positively. Also, the analysis of qualitative data usually involves some degree of interpretation, while the translation 478 479 from Mooré to French to English may have involved some loss of meaning. Finally, the acceptability was evaluated in healthy children, although the supplementary foods are designed for the treatment of children 480 481 with MAM. The appetite of malnourished children is often compromised, which influences consumption 482 and thus the acceptability of foods.

483

484 **Conclusion**

Knowing that foods used for the treatment and prevention of malnutrition are nutritionally and 485 486 scientifically correct is not enough. The way that they are perceived and accepted by beneficiary 487 populations are important factors determining the beneficial effect of a nutritional intervention. The results 488 from this study showed that LNS and CSB products with different quantities of milk and qualities of soy 489 were equally well accepted among healthy children in rural Burkina Faso on organoleptic parameters. 490 However, participants in the CSB groups were less likely to consume the proposed single meal portion size 491 or finish their daily ration. This may be due to the nature of the products, being high bulkiness foods, but it 492 suggests that CSB is not consumed as readily as LNS. Although home testing of the products was shorter

493 compared to other studies, both CSB and LNS products were perceived as easy to administer and the 494 frequency of feeding was estimated to be adequate. The study also found that foods, similar to the 495 introduced new formulations, currently used for the prevention and treatment of malnutrition in the study location were well appreciated. LNS were to a higher degree associated with medicine or foods with 496 497 medicinal properties, but both LNS and CSB were perceived as beneficial to child health. Further research is 498 needed to explore the acceptability of new formulations of supplementary foods among children with 499 MAM and to assess how the perception of foods used for the prevention and treatment of malnutrition as 500 having medicinal qualities may affect acceptability.

501

502 Acknowledgements

503 We are grateful to the study participants and their families, our research assistants Ms Albertine Ouédraogo and Mrs Adja Belem and the rest of the staff of the Alliance for International Medical Action (ALIMA) for 504 505 their valuable contribution to this study. We thank the Ministry of Health in Burkina Faso, the health 506 authorities in Province du Passoré, the village authorities and the staff at the healthcenter in Gonponsom 507 for their support to this study. We furthermore thank GC Rieber Compact A/S for their contribution to the 508 development and production of the experimental supplementary foods. Finally, we thank Médecins Sans 509 Frontières in Norway and Denmark and the Danish International Development Assistance (09-097 LIFE) for 510 funding this study as part of the TreatFOOD project. 511

512 Conflict of interest

513 None declared. Neither the funders nor the manufacturer of the experimental food supplements had any

- role in the design, implementation, analysis or reporting of the results from this study.
- 515
- 516
- 517
- 518

519 References

520 Adu-Afarwuah, S., Lartey, A., Brown, K.H., Zlotkin, S., Briend, A., Dewey, K.G., 2008. Home fortification of 521 complementary foods with micronutrient supplements is well accepted and has positive effects on 522 infant iron status in Ghana. Am. J. Clin. Nutr. 87, 929–938. 523 Adu-Afarwuah, S., Lartey, A., Zeilani, M., Dewey, K.G., 2011. Acceptability of lipid-based nutrient 524 supplements (LNS) among Ghanaian infants and pregnant or lactating women. Matern. Child. Nutr. 525 7, 344-356. doi:10.1111/j.1740-8709.2010.00286.x 526 Bahwere, P., Sadler, K., Collins, S., 2009. Acceptability and effectiveness of chickpea sesame-based ready-527 to-use therapeutic food in malnourished HIV-positive adults. Patient Prefer. Adherence 3, 67–75. Birch, L.L., Marlin, D.W., 1982. I don't like it; I never tried it: effects of exposure on two-year-old children's 528 529 food preferences. Appetite 3, 353-360. doi:10.1016/S0195-6663(82)80053-6 530 Björck, I., Noguchi, A., Asp, N.G., Cheftel, J.C., Dahlqvist, A., 1983. Protein nutritional value of a biscuit processed by extrusion cooking: effects on available lysine. J. Agric. Food Chem. 31, 488-492. 531 532 doi:10.1021/jf00117a006 533 Black, M.M., Walker, S.P., Wachs, T.D., Ulkuer, N., Gardner, J.M., Grantham-McGregor, S., Lozoff, B., Engle, 534 P.L., 2008. Policies to reduce undernutrition include child development. Psychol. Child Dev. 1. 535 Black, R.E., Allen, L.H., Bhutta, Z.A., Caulfield, L.E., de Onis, M., Ezzati, M., Mathers, C., Rivera, J., Maternal 536 and Child Undernutrition Study Group, 2008. Maternal and child undernutrition: global and 537 regional exposures and health consequences. Lancet 371, 243-260. doi:10.1016/S0140-538 6736(07)61690-0 539 Black, R.E., Victora, C.G., Walker, S.P., Bhutta, Z.A., Christian, P., de Onis, M., Ezzati, M., Grantham-540 McGregor, S., Katz, J., Martorell, R., Uauy, R., Maternal and Child Nutrition Study Group, 2013. 541 Maternal and child undernutrition and overweight in low-income and middle-income countries. 542 Lancet 382, 427-451. doi:10.1016/S0140-6736(13)60937-X 543 Brown, K.H., Sanchez-Griñan, M., Perez, F., Peerson, J.M., Ganoza, L., Stern, J.S., 1995. Effects of dietary 544 energy density and feeding frequency on total daily energy intakes of recovering malnourished 545 children. Am. J. Clin. Nutr. 62, 13–18. 546 Cohuet, S., Marquer, C., Shepherd, S., Captier, V., Langendorf, C., Ale, F., Phelan, K., Manzo, M.L., Grais, 547 R.F., 2012. Intra-household use and acceptability of Ready-to-Use-Supplementary-Foods distributed 548 in Niger between July and December 2010. Appetite 59, 698–705. doi:10.1016/j.appet.2012.07.019 549 De Pee, S., Bloem, M.W., 2009. Current and potential role of specially formulated foods and food 550 supplements for preventing malnutrition among 6- to 23-month-old children and for treating 551 moderate malnutrition among 6- to 59-month-old children. Food Nutr. Bull. 30, S434–463. 552 Flax, V.L., Phuka, J., Cheung, Y.B., Ashorn, U., Maleta, K., Ashorn, P., 2010. Feeding patterns and behaviors 553 during home supplementation of underweight Malawian children with lipid-based nutrient 554 supplements or corn-soy blend. Appetite 54, 504–511. doi:10.1016/j.appet.2010.02.003 555 Flax, V.L., Thakwalakwa, C., Phuka, J., Ashorn, U., Cheung, Y.B., Maleta, K., Ashorn, P., 2009. Malawian 556 mothers' attitudes towards the use of two supplementary foods for moderately malnourished 557 children. Appetite 53, 195-202. doi:10.1016/j.appet.2009.06.008 558 Graneheim, U.H., Lundman, B., 2004. Qualitative content analysis in nursing research: concepts, procedures 559 and measures to achieve trustworthiness. Nurse Educ. Today 24, 105–112. 560 doi:10.1016/j.nedt.2003.10.001 561 Grillenberger, M., Neumann, C.G., Murphy, S.P., Bwibo, N.O., van't Veer, P., Hautvast, J.G.A.J., West, C.E., 562 2003. Food supplements have a positive impact on weight gain and the addition of animal source 563 foods increases lean body mass of Kenyan schoolchildren. J. Nutr. 133, 3957S-3964S. 564 Hess, S.Y., Bado, L., Aaron, G.J., Ouédraogo, J.-B., Zeilani, M., Brown, K.H., 2011. Acceptability of zinc-565 fortified, lipid-based nutrient supplements (LNS) prepared for young children in Burkina Faso. 566 Matern. Child. Nutr. 7, 357–367. doi:10.1111/j.1740-8709.2010.00287.x

- Hoppe, C., Andersen, G.S., Jacobsen, S., Mølgaard, C., Friis, H., Sangild, P.T., Michaelsen, K.F., 2008. The use
 of whey or skimmed milk powder in fortified blended foods for vulnerable groups. J. Nutr. 138,
 1455–161S.
- Kuusipalo, H., Maleta, K., Briend, A., Manary, M., Ashorn, P., 2006. Growth and change in blood
 haemoglobin concentration among underweight Malawian infants receiving fortified spreads for 12
 weeks: a preliminary trial. J. Pediatr. Gastroenterol. Nutr. 43, 525–532.
- Kvale, S., 1996. Interviews. An Introduction to Qualitative Research Interviews. SAGE Publications,
 Thousand Oaks.
- LaGrone, L.N., Trehan, I., Meuli, G.J., Wang, R.J., Thakwalakwa, C., Maleta, K., Manary, M.J., 2012. A novel
 fortified blended flour, corn-soy blend "plus-plus," is not inferior to lipid-based ready-to-use
 supplementary foods for the treatment of moderate acute malnutrition in Malawian children. Am.
 J. Clin. Nutr. 95, 212–219. doi:10.3945/ajcn.111.022525
- Lazzerini, M., Rubert, L., Pani, P., 2013. Specially formulated foods for treating children with moderate
 acute malnutrition in low- and middle-income countries. Cochrane Database Syst. Rev. 6,
 CD009584. doi:10.1002/14651858.CD009584.pub2
- Matilsky, D., Maleta, K., Castleman, T., Manary, M., 2009. Supplementary Feeding with Fortified Spreads
 Results in Higher Recovery Rates Than with a Corn/Soy Blend in Moderately Wasted Children. J.
 Nutr. 139, 773–778.
- 585 Ministere de la Santé, Burkina Faso, Direction de la Nutrition. Rapport Enquete Nutritionnelle Nationale, 586 2013.
- Nackers, F., Broillet, F., Oumarou, D., Djibo, A., Gaboulaud, V., Guerin, P.J., Rusch, B., Grais, R.F., Captier, V.,
 2010. Effectiveness of ready-to-use therapeutic food compared to a corn/soy-blend-based pre-mix
 for the treatment of childhood moderate acute malnutrition in Niger. J. Trop. Pediatr. 56, 407–413.
 doi:10.1093/tropej/fmq019
- Owino, V.O., Irena, A.H., Dibari, F., Collins, S., 2014. Development and acceptability of a novel milk-free
 soybean-maize-sorghum ready-to-use therapeutic food (SMS-RUTF) based on industrial extrusion
 cooking process. Matern. Child. Nutr. 10, 126–134. doi:10.1111/j.1740-8709.2012.00400.x
- Paul, K.H., Dickin, K.L., Ali, N.S., Monterrosa, E.C., Stoltzfus, R.J., 2008. Soy-and rice-based processed
 complementary food increases nutrient intakes in infants and is equally acceptable with or without
 added milk powder. J. Nutr. 138, 1963–1968.
- Rowe, J.P., Brodegard, W.C., Pike, O.A., Steele, F.M., Dunn, M.L., 2008. Storage, preparation, and usage of
 fortified food aid among Guatemalan, Ugandan, and Malawian beneficiaries: a field study report.
 Food Nutr. Bull. 29, 213–220.
- Sjaak van der Geest, Meulenbroek, Adèle, 1993. Metaphors, Metonyms and Homeopathy: Terms of Illness
 and Therapy among Mossi People in Burkina Faso. Congrés Eur. Kolloqu. Ethnopharmakologie 285–
 290.
- Suarez, F.L., Springfield, J., Furne, J.K., Lohrmann, T.T., Kerr, P.S., Levitt, M.D., 1999. Gas production in
 human ingesting a soybean flour derived from beans naturally low in oligosaccharides. Am. J. Clin.
 Nutr. 69, 135–139.
- Ventura, A.K., Worobey, J., 2013. Early influences on the development of food preferences. Curr. Biol. CB
 23, R401–408. doi:10.1016/j.cub.2013.02.037
- Wang, R.J., Trehan, I., Lagrone, L.N., Weisz, A.J., Thakwalakwa, C.M., Maleta, K.M., Manary, M.J., 2013.
 Investigation of Food Acceptability and Feeding Practices for Lipid Nutrient Supplements and
 Blended Flours Used to Treat Moderate Malnutrition. J. Nutr. Educ. Behav. 45, 258–263.
 doi:10.1016/j.jneb.2012.08.001
- 612 Whyte, S.R., Geest, S. van der, Hardon, A., 2002. Social Lives of Medicines. Cambridge University Press.
- 613 World Health Organization, 2012. World Health Organization. Technical note: supplementary foods for the 614 management of moderate acute malnutrition in infants and children 6-59 months of age.

Young, S.L., Blanco, I., Hernandez-Cordero, S., Pelto, G.H., Neufeld, L.M., 2010. Organoleptic properties,
ease of use, and perceived health effects are determinants of acceptability of micronutrient
supplements among poor Mexican women. J. Nutr. 140, 605–611. doi:10.3945/jn.109.113498

618

619

620 Tables

Table 1. Food composition table of the 12 experimental supplementary foods

		WHO Technical Note			CSB	per 120	g ⁴		LNS per 92 g					
Product	Unit	2012 ²³	1	2	3	4	5	6	7	8	9	10	11	12
Energy	Kcal	500	500 kcal 500 kcal											
Fat	g	12.5-32.5	11,4	11,7	11,4	11,4	11,4	11,4	31,6	31,5	32,1	31,4	31,5	31,4
Protein	g	10-21.5	16,8	16,5	16,5	15,9	16,2	16,5	13,5	13,5	13,1	12,5	12,8	13,1
Soy quality ⁵			Flour	Flour	Flour	Isolate	Isolate	Isolate	Flour	Flour	Flour	Isolate	Isolate	Isolate
DSM ⁶	%		0	8	20	0	8	20	0	8	20	0	8	20
Calcium	mg	500-700				600		6				600		
Iron	mg	9 ⁷ -15 ⁸				12						12		
Magnesium	mg	140-210				175						175		
Phosporus ⁹	mg	425-700				563						563		
Potassium	mg	750-1100				925	\sim					925		
Sodium	mg	max 250				<250						<250		
Zinc	mg	10-17.5				14	<i>.</i>					14		
Copper	mg	0.5-1.8				1.15						1.15		
Manganese	mg	0.5-1.0				0.75						0.75		
Selenium	μg	17.5-45				31.5						31.5		
Iodine	μg	75-175		\mathbf{O}		125						125		
Vitamin C	mg	> 75	X			188						94		
Thiamin B1	mg	> 0.5				1.0						0.65		
Riboflavin B2	mg	> 2.0	X			3.0						2.5		
Niacin Pantothenic	mg	> 12.5	20.2 15.5							15.5				
acid	mg	> 2.5				4.5						3.2		
Vitamin B6	mg	>				1.8						1.25		
Folic acid	μg	> 200				300						250		
Biotin	μg	> 10				13.8						12.5		

² The specifications are calculated as an example when food supplements provide 70% of energy. Note. This is not a recommendation that food supplements should constitute 70% energy intake of MM children. The formulation is such that it would be safe and effective if the quantity taken by MM children represented 100% energy needs and it would also provide benefit, though of a lesser order of magnitude, if taken in lower quantities(World Health Organization, 2012)

³ The energy density of food supplements when they are ready to be consumed (i.e. cooked foods ready for consumption or ready-to-use foods) should be not less than 0.8 kcal/g(World Health Organization, 2012)

⁴ Some of the water soluble vitamins have been overdosed, in order to compensate for the degraded vitamins during preparation of CSB (GC Rieber Compact A/S)

⁵ Flour = Dehulled soya flour; Isolate = Soy protein isolate

⁸ assuming a 5% bioavailability(World Health Organization, 2012)

⁹ excluding Phosphorus from phytate because it is not bioavailable(World Health Organization, 2012)

⁶ Percentage of total weight

⁷ assuming a 10 % bioavailability(World Health Organization, 2012)

Vitamin B 12	μg	2.5	4.1	3.15
Retinol	μg	1000 - 1500	1375	1250
Vitamin E	mg	> 15	22.8	19
Vitamin D	μg	10-30	22.0	20
Vitamin K	μg	25	34.7	31.5

Accepted Manuscript

621

622

Table 2. Baseline characteristics among 180 children

Product			<u>C</u>	<u>SB</u>		LNS							
Soy quality	<u>[</u>	Dehulled So	Ϋ́		Soy Isolate		<u>D</u>	ehulled So	Y	Soy Isolate			
DSM %	0% (1)	20% (2)	50% (3)	0% (4)	20% (5)	50% (6)	0% (7)	20% (8)	50% (9)	0% (10)	20% (11)	50% (12)	
Participants	15	15	15	15	15	15	15	15	15	15	15	15	
Age (months) mean (<u>+</u> SD)	13 <u>+</u> 5	15 <u>+</u> 5	12 <u>+</u> 6	14 <u>+</u> 6	15 <u>+</u> 7	15 <u>+</u> 5	15 <u>+</u> 5	14 <u>+</u> 5	13 <u>+</u> 5	15 <u>+</u> 6	16 <u>+</u> 5	12 <u>+</u> 5	
Males % (n)	73(11)	53(8)	40(6)	67(10)	73(11)	80(12)	67(10)	60(9)	40(6)	80 (12)	47(7)	67(10)	
Breastfeeding % (n)	100(15)	100(15)	100(15)	93(14)	93(14)	100(15)	93(14)	87 (13)	93(14)	100(15)	80(12)	100(15)	
Health status at inclusion ¹⁰					6								
Healthy % (n)	86(13)	86(13)	87(13)	79(11)	66(10)	93(14)	80(12)	73(11)	73(11)	80(12)	93(14)	80(12)	
Light illness, no medication % (n)	7(1)	7(1)	13(2)	7(1)	27(4)	7(1)	20(3)	27(4)	20(3)	20(3)	7(1)	20(3)	
Moderate illness, medication but no hospitalization % (n)	7(1)	7(1)	0	14(2)	7(1)	0	0	0	7(1)	0	0	0	

 $^{^{10}}$ Missing data on one participant in the CSB SI 0%-group

Product				CS	CSB		LNS						Mean	95% CI	P-values			
Soy quality DSM (%)		De 0% (1)	hulled 20% (2)	Soy 50% (3)	So 0% (4)	oy Isola 20% (5)	te 50% (6)	De 0% (7)	hulled 20% (8)	· ·	S 0% (10)	oy Isola 20% (11)	te 50% (12)	per visit		product-visit interaction [◆]	product main effect ⁺	visit main effect [♠]
Child's appreciation	Visit 1 Visit 2	3.7 4.1	3.8 4.3	3.7 4.1	4.1 4.1	4.0 4.2	4.1 4.3	3.6 4.0	4.1 3.9	4.1 4.3	4.3 4.1	4.1 4.3	4.1 4.2	4.0 4.2	[3.9-4.1] [3.9-4.4]	0.63	0.24	0.012
General perception	Visit 1 Visit 2	4.1 4.1	3.9 4.1	4.1 4.1	4.2 3.9	4.1 4.0	4.0 4.1	4.0 4.0	4.1 4.0	4.3 4.3	4.1 4.0	4.1 4.1	4.1 4.1	4.1 4.1	[3.9-4.2] [4.0-4.1]	0.4	0.11	0.66
Taste	Visit 1 Visit 2	3.8 4.1	3.5 4.1	3.8 4.0	3.9 4.2	3.5 4.0	3.8 3.8	3.8 3.9	3.9 3.9	4.1 4.1	3.8 4.0	3.9 4.3	4.0 4.1	3.8 4.0	[3.7-3.9] [3.8-4.3]	0.48	0.23	<0.001
Odor	Visit 1 Visit 2	4.0 4.0	3.7 4.0	3.9 3.9	3.7 3.9	4.0 3.9	4.1 3.9	3.9 4.0	3.9 3.9	3.9 3.9	3.9 3.8	4.0 3.8	4.0 3.9	3.9 3.9	[3.9-4.0] [3.8-4.1]	0.68	0.86	0.8
Colour	Visit 1 Visit 2	4.2 4.0	4.1 4.0	4.1 4.0	4.1 4.0	3.8 4.0	4.1 4.0	3.9 4.0	4.0 3.9	4.2 4.0	4.0 3.9	4.1 4.0	3.9 3.8	4.0 4.0	[4.0-4.1] [3.9-4.1]	0.66	0.27	0.09
Texture	Visit 1	3.5	3.6	3.9	3.9	3.9	3.7	3.7	3.7	3.9	4.1	3.8	3.6	3.8	[3.7-3.8]	0.01	_	-
	Visit 2	4	4	3.9	4	4	4	3.9	3.7	3.9	3.7	4	3.8	3.9	[3.8-4.1]			
								Ŕ	R									

Table 3. Estimated mean perception (scale from 1 to 5¹¹) of the 12 experimental foods at two visits

¹¹ Organoleptic ratings on a 5 point hedonic scale where 1=dislike very much, 2= dislike, 3=neither like or dislike, 4 =like, 5= like very much

* Evaluation of differences between combinations of product and visit effects by means of linear mixed models with adjustment for age and sex and differences between children (random effects).

* In case product-visit interaction is non-significant, evaluation of differences between products (also using linear mixed models)

* In case product-visit interaction is non-significant, evaluation of differences between the two visits (also using linear mixed models).

Table 4. Leftovers during take home test on 179 children

Product				C	SB					L	NS				
Soy quality			ehulled So	•		Soy Isolat			ehulled S	•		Soy Isolate			
DSM %		0%	20%	50%	0%	20%	50%	0%	20%	50%	0%	20%	50%	Total	P-value
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		
Left-over at the end of		c= (1 c)	= 2 (0)		66 (0)	(-)	60 (0)	c= (10)	a- (a)	(-)		10 (0)			
the day	% (n)	67 (10)	53 (8)	64 (9)	60 (9)	47 (7)	60 (9)	67 (10)	27 (4)	47 (7)	40 (6)	13 (2)	27 (4)	48 (85)	0,037
CSB vs LNS				58	(52)					37	(33)				0.004
	< than half	40 (4)	37.5 (3)	45 (4)	62.5 (5)	43 (3)	50 (4)	40 (4)		50 (3)	50 (3)	100 (2)	50 (2)	49 (40)	
Quantity of left-over	half	50 (5)	37.5 (3)	33 (3)	37.5 (3)	57 (4)	50 (4)	30 (3)	25 (1)	50 (3)	33 (2)	0	50 (2)	40 (33)	0.84
	> than half	10 (1)	25 (2)	22 (2)	0	0	0	30 (3)	0	0	17 (1)	0	0	11 (9)	
						2	O.								
				Ö	Q.	5									
			K												

25

Table 5. Administration of products during take-home test on 179 children

Product		CSB	LNS	
Frequency of feeding/day,	Mean (Std. Err)	2.8 (0.08)	2.3 (0.07)	0.000
Administration of the products % (n)	difficult indifferent easy very easy	1 (1) 1 (1) 96 (84) 2 (2)	0 0 97 (85) 3 (3)	0.6 (1) 0.6 (1) 96 (169) 2.8 (5) <i>0.5</i>
		8 No.		
	c c c c c c c c c c c c c c c c c c c	2°		
	R			

624

Accepted Manuschipt