14,957 research outputs found

    The massive binary population of the starburst cluster Westerlund 1

    Get PDF
    We present initial results from a long-baseline radial velocity survey for massive binaries in the cluster Westerlund 1. Four systems are examined: the dust-producing WC binary W239, the double-lined eclipsing binary W13, and the single-lined B0 supergiants W43a and W3003. Finally, the evolutionary implications for the population of massive stars in Westerlund 1 are discussed

    Learning to Infer Graphics Programs from Hand-Drawn Images

    Full text link
    We introduce a model that learns to convert simple hand drawings into graphics programs written in a subset of \LaTeX. The model combines techniques from deep learning and program synthesis. We learn a convolutional neural network that proposes plausible drawing primitives that explain an image. These drawing primitives are like a trace of the set of primitive commands issued by a graphics program. We learn a model that uses program synthesis techniques to recover a graphics program from that trace. These programs have constructs like variable bindings, iterative loops, or simple kinds of conditionals. With a graphics program in hand, we can correct errors made by the deep network, measure similarity between drawings by use of similar high-level geometric structures, and extrapolate drawings. Taken together these results are a step towards agents that induce useful, human-readable programs from perceptual input

    The effect of NOM characteristics and membrane type on microfiltration performance

    Get PDF
    Efforts to understand and predict the role of different organic fractions in the fouling of low-pressure membranes are presented. Preliminary experiments with an experimental apparatus that incorporates automatic backwashing and filtration over several days has shown that microfiltration of the hydrophilic fractions leads to rapid flux decline and the formation of a cake or gel layer, while the hydrophobic fractions show a steady flux decline and no obvious formation of a gel or cake layer. The addition of calcium to the weakly hydrophobic acid (WHA) fraction led to the formation of a gel layer from associations between components of the WHA. The dominant foulants were found to be the neutral and charged hydrophilic compounds, with hydrophobic and small pore size membranes being the most readily fouled. The findings suggest that surface analyses such as FTIR will preferentially identify hydrophilic compounds as the main foulants, as these components form a gel layer on the surface while the hydrophobic compounds adsorb within the membrane pores. Furthermore, coagulation pre-treatment is also likely to reduce fouling by reducing pore constriction rather than the formation of a gel layer, as coagulants remove the hydrophobic compounds to a large extent and very little of the hydrophilic neutral components

    Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat

    Get PDF
    Wheat was grown hydroponically for 23 days ( early boot stage) in a controlled environment at NO3- concentrations of 100 and 1000 μ,M and CO2 levels of 360 and 1200 μ,mol mo1-1. Nitrogen consumption and transpiration were measured daily. Tissue nitrogen concentration, total biomass, and percent root mass were measured at harvest. Nitrogen recovery and nitrogen use efficiency were calculated. Elevated CO2 increased nitrogen consumption of the 100 μ,M NO3- treatment by 13.6% and the 1000 μ,M NO3- treatment by 21.3%. These increases were particularly evident during tillering and early grain fill. Whole plant nitrogen, shoot NO3-, and root NO3- concentrations were increased by elevated CO2. High CO2increased biomass by 15% and increased percent root mass by 11 %. Nitrogen recovery and nitrogen use efficiency were similar at both CO2 concentrations. Transpiration (L m-2ground d-1) decreased by 40% in elevated CO2. The 1000 μ,M NO3- treatment consumed more NO3- than did the 100 μ,M NO3- treatment (8.1% in ambient CO2, 15.5% in elevated CO2); this effect was most pronounced during the last 5 days of the experiment (flag leaf emergence and early grain fill). Percent root mass increased as N concentration decreased from 1000 to 100 μ,M. Nitrogen levels did not significantly affect tissue N concentration or biomass. Nitrogen losses increased as N supply increased; an average of 16% of the nitrogen added to the 100 μ,M NO3- treatment was lost, while the 1000 μ,M NO3- treatment lost 21%. Nitrogen use efficiency and transpiration were similar in both nitrogen treatments

    A VLT/FLAMES survey for massive binaries in Westerlund 1 IV. Wd1-5 – binary product and a pre-supernova companion for the magnetar CXOU J1647-45?

    Get PDF
    Context. The first soft gamma-ray repeater was discovered over three decades ago, and was subsequently identified as a magnetar, a class of highly magnetised neutron star. It has been hypothesised that these stars power some of the brightest supernovae known, and that they may form the central engines of some long duration gamma-ray bursts. However there is currently no consenus on the formation channel(s) of these objects.Aims. The presence of a magnetar in the starburst cluster Westerlund 1 implies a progenitor with a mass ≥40 M⊙, which favours its formation in a binary that was disrupted at supernova. To test this hypothesis we conducted a search for the putative pre-SN companion.Methods. This was accomplished via a radial velocity survey to identify high-velocity runaways, with subsequent non-LTE model atmosphere analysis of the resultant candidate, Wd1-5.Results. Wd1-5 closely resembles the primaries in the short-period binaries, Wd1-13 and 44, suggesting a similar evolutionary history, although it currently appears single. It is overluminous for its spectroscopic mass and we find evidence of He- and N-enrichement, O-depletion, and critically C-enrichment, a combination of properties that is difficult to explain under single star evolutionary paradigms. We infer a pre-SN history for Wd1-5 which supposes an initial close binary comprising two stars of comparable (~ 41 M⊙ + 35 M⊙) masses. Efficient mass transfer from the initially more massive component leads to the mass-gainer evolving more rapidly, initiating luminous blue variable/common envelope evolution. Reverse, wind-driven mass transfer during its subsequent WC Wolf-Rayet phase leads to the carbon pollution of Wd1-5, before a type Ibc supernova disrupts the binary system. Under the assumption of a physical association between Wd1-5 and J1647-45, the secondary is identified as the magnetar progenitor; its common envelope evolutionary phase prevents spin-down of its core prior to SN and the seed magnetic field for the magnetar forms either in this phase or during the earlier episode of mass transfer in which it was spun-up.Conclusions. Our results suggest that binarity is a key ingredient in the formation of at least a subset of magnetars by preventing spin-down via core-coupling and potentially generating a seed magnetic field. The apparent formation of a magnetar in a Type Ibc supernova is consistent with recent suggestions that superluminous Type Ibc supernovae are powered by the rapid spin-down of these objects

    Spin polarization in the electron gas by a magnetic impurity - Theory of the excess Knight shift

    Get PDF
    Excess Knight shift theory of spin polarization in electron gas by magnetic impuritie

    Data compilation and evaluation of space shielding problems. Radiation hazards in space, volume III

    Get PDF
    Radiation hazards of interplanetary space and related shielding problem
    • …
    corecore