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Abstract

In the absence of an applied magnetic field a process which

will permit the existence of a Fermi contact hyperfine interaction

at the Cu ba nucleus which does not average to zero when summed

over the randomly oriented spins of N conduction electrons is the

scattering of s-wave electrons from the long-ranged exchange poten-

tial of an open-shell impurity atom located at a distance R from

the Cu nucleus and then the Fermi contact interaction at the Cu

nucleus. This is a two-center analog of the virtual process which

is responsible for most of the Fermi contact hyperfine structure

of open-shell atoms (polarization of the closed s core). 	 The first

order energy due to the Fermi contact interaction of the conduction

electrons at the Cu nucleus which have first exchange scattered

from the 3d electrons of Mn is calculated as a function of R.

It is found to change sign between R=4.8299 (nearest neighbor

distance), R- 4.8299 and R=8, and R=8 and R-10 au, suggesting

dependence on impurity concentration experiments and experiments

in which compression or expansion can change the lattice distances.

The exchange potential is presented as a function of electron

velocity and R.	 For completeness the RKKY type spin density

waves are presented as a function of the distance from the impurity

for several values of R. Also for R-0 an estimate is made of the

exchange polarization potential due to the adiabatic polarization

of the impurity by the scattering electrons and found to be signi-

ficant.
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for the spin up eiectron and the absence of these potentials

for the spin down electron.	 This is analogous to the virtual

process which gives the major contribution to the Fermi contact

hyperfine structure in open shell atoms due to the exchange of

an s electron with an open shell electron, its scattering into

an s excited state, then the contact interaction and the scattering

back into the original state. 5,6 This process is represented

diagrammatically by,

S	 S

Therefore many conduction electrons with randomly oriented spins

will experience a net nonzero Fermi interaction with a Cu nucleus

in the vicinity of an open shell impurity atom, in the absence of.

an applied magnetic field.	 The strength of this interaction will

depend on the magnitude of the exchange potential and thus on the

distance between the Cu and impurity atoms. The interaction energy

can be of either sign and thus does not have to be in excess of

the no-impurity shift. The connection with the HWJG and other

theories now becomes more apparent. The above describes the micro-

system of a single Cu = impurity pair.	 Since the other impurities

of the system can be distributed among 2S+1 degenerate states,

the Fermi interactions over the entire system will still average

to zero unless there is an applied field or short ranged magnetic

order among the impurity atoms (known to exist for Mn 7 ). This

paper will be concerned with a given pair for which the impurity

has a particular spin projection M S (M S S is the case chosen) and

thus with the zero-field shift localized in the region of this pair.



ter Fagg

t is cIcar w.'.' at	 cDaaiiS when the field is turned on	 At zero

te.-nperature all o17 the Mn atoms occupy the lowest of the 2S+1

Zaaman-split states, and tie local shifts Cue to the Fermi

Interaction are of the ssme sign and add. 	 As the temperature

increases the levels become equally populated, and the local

shifts average to zero over the entire system.	 This is in

agreement with the observations of Sugawara.
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Theory

The first order energy due to the Fermi contact interaction

at the Cu nucleus is given.by ,

ivy *ko(r)12ueuN8'T/36(r)s•IJiPka(r)>
	

1

where k represents the set of quantum numbers kRm (onlyR-m-0

contribute to this integral by the operation of the delta

function8(r)) and o is an index over the spin states of N

conduction electrons, each of which has a wave function

(dropping the spin indices),

1P k (r) - (2/RO)}kja,(i)"(2.t,+l)" 'tu k l (r)P^(cos6) /(4n)
	

2

where the radial waves are normalized by t'ie condition that they

vanish at the boundary of a sphere of radius R 0 ; hence,

i - R0/7rldkim	 3

f
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is the phase shift, defined as usual by the condition,

lim ukj (r) - sin(kr - 7r /2>i + 6R)/kr

r+c*

and a R are defined such that aRa R is the-Fermi distribution

function which at zero temperature (assumed throughout) if 1

for electrons whose energies are below e F and 0 for electrons
whose energies are above, where e  is the Fermi energy, taken

to be 7ev for the free electron model of Cu b . s and 1 are the

electron and nuclear spin angular momenta respectively, p  and

u N are A /2me c and 2.22617 eti /2mp c respectively, and

6(r) - i6(r)/r 2 (21+1)P 2 (cose)/4Tr	 5

The particle wave function is given in the first Born iteration

by,

4,k(r) - 
e ik-r - fdr'G(r,r')V(r')eik•r

4

G(r,r )	 1/41reik r-r
	 6

r-r
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The potential is defined,

V(r)	 2(-Z1 /rMn - Z2/rCu +
}

Zfdr' {*.(r')(ltd(ms,ms '))Pi^^,^(r')

IL - r'I

t * ( r ' ) a ( m s . m s ' ) P i j V+ j (r')(e	 - k 2 /2)))	 7

where ms and ms are the spin projections of the scattering and

atomic electrons respectively, Z 1 . N 1 and Z 2 , N 2 are the charges

and numbers of electrons of Mn and Cu respectively, e  are the

orbital energies of the bound states* * (r) on Cu and Mn, and Pij

permutes the coordinates of the bound and scattering electrons,

giving exchange potentials for (+) singlet and (-) triplet

scattering respectively, The key point of the potential is the

fact that when the summation over spin states is performed in 1

there is cancellation of the products of the Fermi interaction

and the coulomb (direct) interaction and cancellation of the

products of the Fermi interaction and the exchange interaction

for all interactions except those products which involve exchange

with the Mn d electrons.

Rigorously we should consider the scattering as modified

by the residual 1/r Cu (coulomb tail) potential left when the 4s

electron is removed and the band structure (resulting from use

of Bloch waves) which the less completely screened potential can

support at close distances. The first consideration is not relevant

in the first Born method of solution used here (iteration with un-

distorted plane waves), and the negiiect of band effects is at least

qualitatively correct for the long-ranged exchange process considered
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here.	 Further there is an additional potential9 V
pol i Vpol,exch'

which results from the long-ranged polarization of the target by

the scattering electron and is known to affect the phase shift by

about 10 ,in the low energy elastic scattering from hydrogen atoms.

We have estimated the contribution of 
Vpol,exch 

for the fictitious

case (R-0) when the Cu and Mn atoms are united and found the

exchange potential changed by about 10%. A careful study of this

potential at nonzero R is therefore indicated (see the appendix)

We specialize eq. 6 to r-0 (the only contribution to the

delta function interaction in 1), leaving only the leading term

In the expansion of G,

Jim ^ k (r) -0 - 1/4njd r leikr'/r' 1i ( r ')eik•r')x(2/R0)}kaOeia0 /(4n)}
ry 0

8

where V is obtained by keeping cnly the s-d exchange terms in

7, since ail others cancel when 1 is evaluated. We then define,

J(k,R)/k - - 1 /4nJdr'cos(kr')/r'V(r')j 0 (kr')
	

9

where we have kept the leading term in the plane wave expansion

of e ik ^'r .	 This is equivalent to spherically averaging the potential
so that the 1-0 partial wave, which is the only waVe'which"contri-

butes to 1, is uncoupled to other partial waves.

If the spin up states ara given by 8, then the spin down states

are given by,

lim * k ( r ) - 1x(2/R0)ika0a160/(470}
r7% 0 —

}

10



9

which is a consequence of the choice M S W S for the 6  ground
state of Mn. Thus to first order in J eq. 1 becomes,

k
D E S /1' a, 11 N 

a 4/ir6dk k J (k,R)

when the exchange potentials take the upper sign (singlet

scattering).	 The total shift is given by,

AE - 1/46E 5 + 3/4AE t	12

where AE  results when t!, e potentials take the upper sign

(triplet scatteri.ng ).
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.RKKY Spin Density

The spin density function is defined here as p+-pt,

where,

PT+ s 1*kf+12

a	 IVk(r)	 e ik r - e ikr/4ar ldrIe- ik r (V(r ' ) +2 (8n/3ue11N26(r' )msm1)

V k (r^ )

	
13

for large distances from the Cu nucleus. For close distances we

can write,

^ 
(r) _ e ik r - e-ik r/4wfdr eikr

k
/r' (V(r ' ) +2 (8n /3Uei1N26(r')msmi)

*k (r )	 14

Now substitute 14 into the right hand side of 13 and keep only

cross products of the Fermi and V interactions. When the modulus

is taken and the difference of spin down and spin up densities

summed over k, the result to first order in J is,



11

Q(r) _ .4/'r65k sin(2kr)/r 2J(k,R)x4/31, U m s m i x1 /4n

r = (r2Mn
+ R 2 - 2r Mn RcosBMA
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we average this expression over the angles of Mn in the usual

way and define the pefturbation t6-:the electron density resulting

from the two-center scattering process as a function of the

distance from the impurity atom as,

p(r) = 1/41rrdodesinea(r)
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This function is plotted in Figs. 1, 2 and 3 for several

values of R.

It is important to note that even though eq. 13 results

from the large r expansion of the Green's function (6), it

is the only surviving term in the limit r^=0 when the Fermi

interaction in 13 is evaluated, and likewise for the small

r expansion of the Green's function to give 14. Thus the

result (15):%s not asymtotic for large r.
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Numerical Procedures

The exchange integrals defined by J(k,R) are the two-electron,

two-center type, and the integrations are performed numerically

in prolate spheroidal coordinates defined by,

&	 (rMn+rCu)/R

n	 ( rMn r Cu ) /R	 17

where R is along the polar axis of the reference frame. The

inverse distance (r-r'I are given in spheroidal coordinates

by the Neumann expansion l0,

2 /REE( 2j+1) ((j - l m ) )! / ( j+ l m ) )! ) 2 P[ ml (, )Q[ m j' 
(^ )P[ mI (n )P!ml (n )j m	J 	 < j	 > j	 1 j	 2

eim(O1-02)x(-1)m
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where P and Q are the associated Legendre functions of the first

and second kind respectively. The results were checked by taking

R-.01 in the spheroidal coordinates and checking against the Rao

integrals in spherical polar coordinates. Note that in the R-0

limit only the j-2 term of the Neumann series is nonvanishing in

the integral defined by 9 owing to the angular integrations over

and s and d pair. For RHO, however, the expansion must be carried
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to convergence , and the contribution for each term through

j-8 is tabulated in Table 2. The overlap terms in eq. 7

were estimated to contribute about 1% at R-1 to the energy

shift and were neglected (note that only the m-0 d electron

has an overlap with the s waves).

Inspection of Table 2 shows that for R greater than about

4 the convergence is very slow. The numbers for the higher R's

are not fully converged, but are adequate to establish that the

oscillatory variation of the shift with R is not an artifact of

a nonconverged series. Also it is felt that this convergence is

adequate given the set of physical approximations used in this

calculation.

All integrals were evaluated using the analytic Hartree-

Fock d orbitals of Mn calculated by Clementi.t1



14

Results and Discussion

Values of J(k,R) and AE s are tabulated in Tables 1 and 2.

Two interesting features of these results are-the very long

range of the exchange potential and the oscillatory dependence

of the energy shift on R. The long range is familiar in the

evaluation of atomic hyperfine structure by perturbation

theory 5 ' 6 in which better than 90% of 'the contribution to the

core polarization exchange diagram (see the Introduction) comes

from the continuum excited states of the atom. This is due, of

course, to the unboundedness of the continuum functions; thus the

boundedness of the integrals is governed by.how tightly the d

electrons are bound. The oscillat-:^fy behavior of AE  can be

inferred from the oscillatory dependence of J(k,R) on k for

larger R by inspection of Table 1, and is to be expected when

the interaction is small at large R, leaving a kind of distorted

overlap of d orbitals with continuum orbitals. -This means that

there will be a complicated dependence of the shift on impurity

concentration and suggests dependence on concentration experiments

and/or experiments in which compression or expansion of the metal

can change the lattice distances. 	 Note that the interaction is

almost at a node for the nearest neighbor distance R - 4.8299 and

is larger and of opposite sign at the next nearest neighbor

distance R=6.8305.

In the interpretation of the results for larger R it is

important to appreciate the smallness of the interaction and

thus the tentativeness of the numbers of this calculation, from

the point of view of the absolute numerical accuracy but especially

from the point of view that better approximations to the physics

need to be considered. Some of these include the exact numerical

^5.
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solution of the relevant equations to obtain scattering wave

functions more accurate than the first Born iteration used

here, the consideration of band effects, the adiabatic polar-

ization of the target (see the appendix), electron correlation,

and the deviation of the d orbitals from those of the free

atom. Also in Cu-Mn it is very important to consider the

short ranged magnetic order (clustering) of the solute atoms.
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Figure Captions

Fig. 1.	 p(r)/.a where a=I/yn-u eu N x3/5 as a function of r, the

distance from Mn, averaged over the angles of Mn, for several

values of R.	 Calculated using J vhlues.:converged'through'jw2.

Fig..2.	 p(r)%(-where a -I ...	 N x3 /5 as a function of r, the distanceell
from Mn, averaged over the angles of Mn, for several values of

R. Calculated using J values converged through j-2.

Fig. 3. p(r)/a where a- %P e u N x3 /5 as a function of r, the distance

from Mn, averaged over the angles of.Mn, for several values of

R. Calculated using J values converged through j•2.
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Appendix. Adiabatic exchange polarization potential.

The contribution of the adiabatic exchange polarization

potential is estimated as foi ,lows. When the Mn target is

polarized by a static electron at r 2 , the solution to the

first order egyati;on from Rayleigh-Schrodinge .r: perturbation

theory- ;(.for a perturbation. on the m-O'-orbital. in particular,

where nondegenerate perturbation theory can be used because

the d orbitals are not split by the dipole potential of

polarized orbital theory 9 )' is•;

- -(2) 7/2/(720)'x(5/ 4 70u 1 (r)/rP 1 (F • r2 r2P 2 (cos9) c (r < r 2 )	 1

wheree is a step function 1 f-or r<r 2 .a-nd 0. for . r>r 2 where the

radial part of the 3 d orbital (unnormalized) is taken 'to

be r 2exp(-r) (based on a binding energy of abo.ut .6 a.u. as

calculated by Clementi). We do not take Clementi's HF function

for the unperturbed orbital because then we could not find

an analytic solution to the fl rst. order eq.uati.on. The first

.order radial solution.is,

u 1 (r) - e-r(r2+r.3/2+r4/5+r5/15+11X6%.(.l4x15)+1lr7/(4x14xl5)

+22r8/(9x4xi4x15-.)+154r.9/(35x9x4x.14x15.}+308.r10%(11x35x9x4x14xl5)

+ 0(10 -4 )r
1i )	 2

i
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The exchange polarization potential is generated by substituing

1 for one *j in eq. 7 of the text. J(k,R-O) is about 10% of

J(k,R-O) calculated with unpol.arized orbitals. 	 It is clear

that this effect should be looked at more quantitatively.

Y

A.
i4 ^u'
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