Pata Compilation and Evaluation of SPACE SHIELDING PROBLEMS

Volume III

Radiation

Radiation

Hard copy (HC)

Microfiche (MF)

Hazards in Spac Hess July 85

CONTRACT NASS-11164

	Ž	167 11966	`
D	FORM	(ACCESSION NUMBER)	(THRU)
R-7777	FACILI	(MASA CR OR TMX OR AD NUMBER)	(CODE)

LOCKHEED NUCLEAR PRODUCTS

Lockheed-Georgia Company -- A Division of Lockheed Aircraft Corporation

DATA COMPILATION AND EVALUATION OF SPACE SHIELDING PROBLEMS

RADIATION HAZARDS IN SPACE VOLUME III

Prepared For:

GEORGE C. MARSHALL SPACE FLIGHT CENTER

Prepared By:

C.W. Hill W.B. Ritchie K.M. Simpson, Jr.

LOCKHEED NUCLEAR PRODUCTS

Lockheed-Georgia Company - A Division of Lockheed Aircraft Corporation

If this document is supplied under the requirements of a United States Government contract, the following legend shall apply unless the letter U appears in the coding box.

This data is furnished under a United States Government contract and only those portions hereof which are marked (for example, by circling, underscoring or otherwise) and indicated as being subject to this legend shall not be released outside the Government (except to foreign governments, subject to these same limitations), nor be disclosed, used, or duplicated, for procurement or manufacturing purposes, except as otherwise authorized by contract, without the permission of Lockheed-Georgia Company, A Division of Lockheed Aircraft Corporation, Marietta, Georgia. This legend shall be marked on any reproduction hereon in whole or in part.

The "otherwise marking" and "indicated portions" as used above shall mean this statement and include all details or manufacture contained herein respectively.

FOREWORD

Volume III, ER 7777, Data Compilation and Evaluation of Space Shielding Problems – Radiation Hazards in Space, is a technical summary report of a study performed under Contract NAS 8–11164 to the George C. Marshall Space Flight Center, NASA, Huntsville, Alabama. The Technical Contract Monitor is M. O. Burrell of the Research Projects Division.

TABLE OF CONTENTS

		Page
FOREW	/ORD	i
TABLE	of contents	iii
LIST O	F TABLES AND FIGURES	V
ABSTRA	ACT	1
1.0	INTRODUCTION	3
2.0	MISSION STUDIES	5
2.1	GEOMETRIC CONFIGURATION	6
2.2	MARS MISSION RADIATION HAZARDS	6
2.3	LUNAR MISSIONS	9
2.4	EARTH ORBITAL MISSIONS	10
3.0	FLARE PROGRAM	13
3.1	FLARE PROGRAM DESCRIPTION	14
3.2	GLOSSARY OF INPUT DATA TERMS	30
3.3	INPUT DATA PREPARATION	32
3.4	FLARE PROGRAM OUTPUT	32
4.0	DOSE PROGRAM	35
4.1	PROTON AND ALPHA DOSE CALCULATION	36
4.2	ELECTRON DOSE CALCULATION	47
4.3	SPECIAL FEATURES	62
4.4	DOSE PROGRAM DATA INPUT PREPARATION	62
4.5	DOSE PROGRAM OUTPUT	69
APPENC	DIX A	71

TABLE OF CONTENTS (Continued)

	(Continued)	Pag
APPENDIX B		75
APPENDIX C		77
APPENDIX D		79
APPENDIX E		89
APPENDIX F		121
APPENDIX G		129
APPENDIX H		145
REFERENCES		1.55

LIST OF TABLES AND FIGURES

T 14		Page
Tables		
TABLE 4-1	PRODUCTION CROSS SECTIONS FROM ALPHA	
	BOMBARDMENT OF NIOBIUM AND RATIO OF	
	ALPHA TO PROTON INDUCED CROSS SECTIONS	39
TABLE 4-2	PRODUCTION CROSS SECTIONS FROM 700 MeV	
	ALPHA BOMBARDMENT AND RATIO OF ALPHA	
	to proton induced cross sections	40
TABLE 4-3	ELECTRON NUMBER TRANSMISSION - SAPPHIRE	54
TABLE 4-4	ELECTRON NUMBER TRANSMISSION - ALUMINUM	
	ONE MeV	54
Appendix Tab	les	
TABLE A1	COMPILATION OF SOLAR FLUX EVENTS	
	1954 - 1963	72
TABLE B1	COMPILATION OF SMALL SOLAR FLUX EVENTS	
	DURING 1960, UNACCOMPANIED BY PCA	76
TABLE C1	JULIAN DAY NUMBER - DAYS ELAPSED AT	
	GREENWICH NOON, A. D. 1950 - 2000	<i>7</i> 8
TABLE DI	MARS MISSION SPECTRA	80
TABLE D2	LUNAR MISSION SPECTRA	83
TABLE D3	EARTH ORBIT SPECTRA - PROTONS, AP3	86
TABLE D4	EARTH ORBIT SPECTRA - ELECTRONS, 1968	87
TABLE E1	PROTON RADIATION EXPOSURE DOSE LIMITS	90
TABLE G1	FLARE PROGRAM INPUT DATA	131
TABLE G2	FLARE PROGRAM OUTPUT LISTING - IBM 7094	133
TABLE G3	FLARE PROGRAM OUTPUT LISTING - IBM	
	SYSTEM 360/50	139
TABLE HI	DOSE PROGRAM INPUT DATA	147

LIST OF TABLES AND FIGURES

	(Confinued)	Page
Appendix Tabl	es	
TABLE H2	DOSE PROGRAM OUTPUT LISTING	149
Figures		
FIGURE 2-1	GEOMETRIC CONFIGURATION	7
FIGURE 3-1	SOLAR FLUX EVENTS IN THE 19TH CYCLE	16
FIGURE 3-2	SOLAR FLUX EVENTS IN THE 19TH CYCLE SHOWING	.0
	SUMMER-WINTER ASYMMETRY - C = 0.4	1 <i>7</i>
FIGURE 3-3	SUM OF TWO BETA DISTRIBUTIONS	18
FIGURE 3-4	CUMULATIVE EVENT DISTRIBUTION VERSUS	, •
	TIME-INTEGRATED OMNIDIRECTIONAL FLUX	21
FIGURE 3-5	CUMULATIVE NUMBER OF FLARES CHARACTERIZED	
	BY P OR GREATER VERSUS P	24
FIGURE 3-6	PROTON/ALPHA RATIO AS FUNCTION OF P	27
FIGURE 4-1	ENERGY TIMES ELECTRON STOPPING POWER	
	FOR WATER VERSUS ENERGY	50
FIGURE 4-2	PERCENT ERROR IN ELECTRON RANGE FUNCTION	
	FOR ALUMINUM	51
FIGURE 4-3	COMPARISON OF ELECTRON ENERGY SPECTRA	
	THROUGH SAPPHIRE (Al ₂ O ₃) - 1 MeV	55
FIGURE 4-4	COMPARISON OF ELECTRON ENERGY SPECTRA	
	THROUGH SAPPHIRE (AI ₂ O ₃) - 2 MeV	56
FIGURE 4-5	COMPARISON OF ELECTRON ENERGY SPECTRA	
	THROUGH SAPPHIRE (Al ₂ O ₃) - 4 MeV	57
FIGURE 4-6	COMPARISON OF ELECTRON ENERGY SPECTRA	
	THROUGH SAPPHIRE (AI ₂ O ₃) - 8 MeV	58
FIGURE 4-7	COMPARISON OF ELECTRON ENERGY SPECTRA	
	THROUGH ALUMINUM - 1 MeV	59

	(Continued)	Page
Figures		3
FIGURE 4-8	COMPARISON OF ELECTRON ENERGY SPECTRA	
	THROUGH ALUMINUM - 1 MeV	60
FIGURE 4-9	ELECTRON SPECTRA THROUGH ALUMINUM SHIELD	61
Appendix Figu	res	
FIGURE E1	EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS	
	FOR A MARS MISSION	91
FIGURE E2	ABDOMEN DOSE VERSUS ALUMINUM SHIELD	
	THICKNESS FOR A MARS MISSION	92
FIGURE E3	EYE DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A MARS MISSION	93
FIGURE E4	ABDOMEN DOSE VERSUS POLYETHYLENE	
	SHIELD THICKNESS FOR A MARS MISSION	94
FIGURE E5	EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS	
	FOR A MARS MISSION	95
FIGURE E6	ABDOMEN DOSE VERSUS ALUMINUM SHIELD	
	THICKNESS FOR A MARS MISSION	96
FIGURE E7	EYE DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A MARS MISSION	97
FIGURE E8	ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A MARS MISSION	98
FIGURE E9	EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS	
	FOR A MARS MISSION	99
FIGURE E10	ABDOMEN DOSE VERSUS ALUMINUM SHIELD	
	THICKNESS FOR A MARS MISSION	100
FIGURE E11	EYE DOSE VERSUS POLYETHYLENE SHIELD THICKNESS	
	FOR A MARS MISSION	101

	(Continued)	Page
Appendix Figu	res	90
FIGURE E12	ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A MARS MISSION	102
FIGURE E13	EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS	
	FOR A LUNAR MISSION	103
FIGURE E14	ABDOMEN DOSE VERSUS ALUMINUM SHIELD	
	THICKNESS FOR A LUNAR MISSION	104
FIGURE E15	EYE DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A LUNAR MISSION	105
FIGURE E16	ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A LUNAR MISSION	106
FIGURE E17	EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS	
	for a lunar mission	107
FIGURE E18	ABDOMEN DOSE VERSUS ALUMINUM SHIELD	
	THICKNESS FOR A LUNAR MISSION	108
FIGURE E19	EYE DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A LUNAR MISSION	109
FIGURE E20	ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A LUNAR MISSION	110
FIGURE E21	EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS	
	for a lunar mission	111
FIGURE E22	ABDOMEN DOSE VERSUS ALUMINUM SHIELD	
	THICKNESS FOR A LUNAR MISSION	112
FIGURE E23	EYE DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A LUNAR MISSION	113
FIGURE E24	ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD	
	THICKNESS FOR A LUNAR MISSION	114

LIST OF TABLES AND FIGURES (Continued)

	(Commodd)	Page
Appendix Figu	ures	ruge
FIGURE E25	EYE DOSE RATE VERSUS ALUMINUM SHIELD	
	THICKNESS FOR CIRCULAR ORBITS IN THE	
	TRAPPED RADIATION BELTS - AP3	115
FIGURE E26	EYE DOSE RATE VERSUS ALUMINUM SHIELD	.,,
	THICKNESS FOR CIRCULAR ORBITS IN THE	
	TRAPPED RADIATION BELTS - AP3	116
FIGURE E27	ABDOMEN DOSE RATE VERSUS ALUMINUM	
	SHIELD THICKNESS FOR CIRCULAR ORBITS	
	IN THE TRAPPED RADIATION BELTS - AP3	117
FIGURE E27	ABDOMEN DOSE RATE VERSUS ALUMINUM	
	SHIELD THICKNESS FOR CIRCULAR ORBITS	
	IN THE TRAPPED RADIATION BELTS - AP3	118
FIGURE E29	EYE DOSE RATE VERSUS ALTITUDE BEHIND ONE	
	gm/cm ² ALUMINUM SHIELD FOR CIRCULAR ORBITS	
	IN THE TRAPPED RADIATION BELTS - 1968	
	ELECTRON ENVIRONMENT	119
FIGURE E30	EYE DOSE RATE VERSUS ALTITUDE BEHINE FOUR	
	gm/cm ² ALUMINUM SHIELD FOR CIRCULAR ORBITS	
	IN THE TRAPPED RADIATION BELTS - 1968	
	ELECTRON ENVIRONMENT	120
FIGURE F1	NEUTRON YIELD FROM MANGANESE – 55	122
FIGURE F2	NEUTRON YIELD FROM IRON - 56	123
FIGURE F3	NEUTRON YIELD FROM NICKEL - 58	124
FIGURE F4	NEUTRON YIELD FROM NICKEL - 62	125
FIGURE F5	NEUTRON YIELD FROM COPPER - 63	126
FIGURE F6	NEUTRON YIELD CROSS SECTIONS FOR ALPHA	
	BOMBARDMENT OF GOLD - 197	127

ABSTRACT

This report presents the results of parametric studies investigating the hazards of space radiations in relation to various local and interplanetary missions. The radiation types include proton and alpha particles emitted in solar flux events and proton and electron particles trapped in the magnetosphere of the Earth. The missions are three Mars expeditions, three 14-day Lunar expeditions, and 29 orbital studies. Detectors are located in the eye and abdomen of a man model placed in a cylindrical vehicle composed of either aluminum or polyethylene. The vehicle wall thickness ranges from 1 to 30 gm/cm². Descriptions of the principal computer programs employed in these studies are contained in this report.

1.0 INTRODUCTION

This volume represents a continuation of investigations into the hazards of space radiation and associated shielding problems. Presented here are the results of parametric studies of interplanetary and local space missions. Also included is a description of an additional computer program not contained in Volume II 25, and modifications to the Dose program initially described in Volume II. The additional program provides proton and alpha spectra, integral in energy, due to solar flux events. The modifications to the Dose program permit the calculation of alpha and electron doses (or dose rates) as well as proton doses (or dose rates).

These parametric studies are described in Section 2.0, and the results are presented in Appendix E. Dose estimates are obtained for three Mars missions and three Lunar missions with four alpha and proton spectra for each mission. The vehicle wall thicknesses for these missions are 1, 2, 5, 10, 20, and 30 gm/cm² of aluminum and the same set of thicknesses for polyethylene. The dose estimates are made in the right eye and abdomen of a man model placed in the vehicle. The results of these 1152 dose calculations are presented graphically. In addition to the Mars and Lunar missions, dose calculations are performed for the aluminum vehicle in orbit about the Earth. Proton and electron dose rates are obtained for three angles of inclination (0°, 30° , and 90°) and for ten altitudes ranging from 150 to 15,000 nautical miles. The same shield thicknesses and detector locations as in the Mars and Lunar missions are employed. The results of the orbital missions are also presented graphically. The spectra involved in the various missions are presented in tabular form in Appendix D. Associated with each spectrum resulting from solar activity is a probability that that particular hazard will be exceeded during that mission. The spectra associated with Earth orbits are projected for the 1968 time period.

Section 3.0 describes a mathematical model used to predict proton and alpha total mission flux, integral in energy, due to solar flux events. The integral fluxes are

tabulated at 10, 30, 50, 100, 200, 400, 1000, and 1500 MeV. At each energy, there are 55 flux values and the associated probability, at each flux value, of exceeding that value. Flux event clustering and summer-winter asymmetry are available as options. This model is incorporated into a Fortran IV language computer program acceptable to either the IBM 7094 or System 360/50.

The Dose program modifications are presented in Section 4.0. The alpha dose calculation employs the same techniques as the proton dose calculation; therefore, the calculational methods of Section 5.1, Volume II, are repeated for the reader's convenience in Section 4.1 of this volume. The calculation of electron dose (or dose rate) is described in Section 4.2. The results of the electron transport methods are compared with the Monte Carlo results of Berger and Seltzer. 11, 12

The computer programs described in this report and in previous space radiation shielding reports may be obtained from Radiation Shielding Information Center, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee, 37831.

2.0 MISSION STUDIES

This section investigates radiation dose estimates for several local and interplanetary missions. The vehicle configuration is described; calculational limitations are listed; mission source spectra are discussed; and conclusions are listed. In Appendix E, the results of these investigations are graphically displayed along with a table of dose tolerances for comparison. Appendix D contains tabulations of the various mission spectra.

Several points should be remembered in connection with the present calculations. The Mars and Lunar mission dose calculations do not include contributions from the trapped radiation belts. The orbital mission calculations do not include a solar flux event component. No provision is made for estimating electron bremsstrahlung or the penetration of solar flare radiation into the geomagnetic field. These capabilities will be added to the system in the near future. Cosmic ray dose is not included; this component depends on solar activity, position in the solar system, and shielding. Finally, the question of biological effectiveness is avoided by the use of physical dose units.

Considerations of various transmitted proton spectra 5, energy loss 24, and RBE 19 indicate that biological dose should be approximately equal to physical dose for shields ranging from 1 to 50 grams per square centimeter in thickness. Below this range, some solar flares with large low energy fluxes may produce skin biological dose much larger than physical dose. Above this range, secondary neutrons may raise the biological dose above physical dose. Similar considerations for alphas indicate that biological dose may be two to five times greater than physical dose for the same shield thicknesses. Electron energy loss data 13 and RBE 19 data indicate that biological dose is equal to physical dose for electron energies below 300 MeV.

2.1 GEOMETRIC CONFIGURATION

A simple vehicle configuration is chosen in order to expedite the analysis and ease the computation. The vehicle is a circular cylinder, surmounted by spherical end caps. The internal diameter is eight feet and the length is twenty feet. One standing man model is located along the vehicle mid-line with his feet at the center of the vehicle. Detector points are located in his right eye and the center of his abdomen. Vehicle walls are one inch thick. The wall density is specified so that mass thickness is one gram per square centimeter. The mass thickness is increased for purposes of a parametric survey by means of the "FF" factors in the Dose program. The material, aluminum or polyethylene, is specified in Dose program data. A sketch of the configuration is shown in Figure 2-1. This simple configuration is used in estimating doses for Mars missions, Lunar missions, and Earth orbital missions.

2.2 MARS MISSION RADIATION HAZARDS

An estimate of solar flare radiation hazards is made for three Mars missions by means of the Flare program and Dose program described in Sections 3.0 and 4.0.

The mission launch dates are October 9, 1977, December 28, 1981, and April 16, 1986. Each mission is approximately 450 days in length, with a Mars stay time of 20 days. The return trajectory passes inside the orbit of Venus. A total of 1000 histories are processed by the Flare program for each mission. A history is a stochastic representation of the course of solar flux events throughout the mission.

The cumulative proton and alpha integral flux distributions constructed by the Flare program are used to derive a set of integral flux spectra for a mission. A percent is associated with each cumulative integral flux spectrum; this percent represents the probability that the cumulative integral flux at each energy is exceeded. For a given probability, the integral flux spectrum is processed by the LSSC 23 program to generate

FIGURE 2-1 GEOMETRIC CONFIGURATION

a spectrum differential in energy. The spectra for three Mars missions, at the 0.1, 1.0, 10, and 50 percent probability levels, are tabulated in Appendix D.

Doses received at the eye and at the center of the abdomen of the man model within the configuration of Section 2.1 are shown graphically in Figures E1 – E12 of Appendix E. Caution should be used in the interpretation of the results presented in Appendix E. These data assume that future solar cycles will exhibit the same activity as the one just past, which, according to sunspot indices, was the most active in the last two centuries. The model described in Section 3.0 permits flux events much larger than those observed in the last cycle. The manner of computing doses at the 0.1 and 1.0 percent probability levels may be conservative. Finally, the statistics at the low probability levels are fairly poor.

With the above cautions in mind, a few tentative conclusions may be stated with regard to these Mars missions.

- (1) On a mass thickness basis, polyethylene is a better shield than aluminum, improving with increasing shield thickness.
- (2) The alpha hazard is smaller than the proton hazard in all cases of interest.
- (3) For the mission encountering the greatest hazard (1981),15gm/cm² of aluminum or 11 gm/cm² of polyethylene reduce eye dose to 100 rads with 90 percent probability.
- (4) During solar minimum, a 10 gm/cm² aluminum or 7 gm/cm² polyethylene shield provides adequate protection against maximum permissible single acute emergency exposure 14 with greater than 99 percent probability.
- (5) As probability of occurrence becomes smaller, the proton spectrum becomes

harder.

(6) For the mission encountering the greatest hazard, a 30 gm/cm² shield would not provide adequate protection with 99 percent probability.

Conclusions 5 and 6 may justly be regarded as questionable pending further investigation of the Flare model.

2.3 LUNAR MISSIONS

The term "Lunar missions" is intended to include voyages at one astronomical unit from the Sun and near the orbital plane of the Earth but effectively outside the magnetosphere. Synchronous orbital missions approximate these conditions. The vehicle configuration is the same as that of the Mars missions. The duration of the Lunar missions is 14 days. The number of histories processed for each mission is 10,000.

The same considerations and cautions applied to the Mars mission data generally hold for the Lunar mission results. However, the statistical uncertainty in the 0.1 percent probability curves is reduced. One feature of the Flare program mathematical model, not discussed explicitly in connection with the Mars mission results, acquires great importance in these shorter missions. The Flare program assumes a summer-winter asymmetry in the occurence of solar flux events. The asymmetry parameter is set to 0.4. A description of the summer-winter asymmetry option is given in Section 3.0. The Lunar mission dates (June 1–14, 1969, January 1–14, 1970, and June 1–14, 1971) are chosen to illustrate the effect of this asymmetry.

The proton and alpha fluxes computed for lunar missions are tabulated in Appendix D. The doses computed from these fluxes are plotted in Figures E13 - E24 of Appendix E.

Several interesting features may be inferred from the graphs.

- (1) In no case is there a 50 percent or greater probability of receiving one rad behind a one gm/cm² shield.
- (2) For the mission encountering the greatest radiation hazard (June 1969), a 10 gm/cm² aluminum shield reduces eye dose to 100 rads with 99 percent probability.
- (3) For the same mission (June 1969), 16 gm/cm² polyethylene or 22 gm/cm² aluminum are required to keep eye dose below 25 rads with 99 percent probability.
- (4) For the same mission (June 1969), 5 gm/cm² aluminum will restrict abdomen dose to 25 rads with 99 percent probability.

As in the Mars mission results, polyethylene is a better shield than aluminum; the alpha hazard is negligible for shields thicker than 5 gm/cm²; and the proton spectrum becomes harder with decreasing probability of occurrence.

2.4 EARTH ORBITAL MISSIONS

Eye and abdomen dose rates within the configuration of Section 2.1 are estimated for circular orbits in the trapped radiation belts. These orbits have angular inclinations of 0, 30, and 90 degrees and altitudes ranging from 150 to 15,000 nautical miles. The primary radiations considered include protons and electrons.

Radiation intensities are taken from orbital integrations of the AP 3 (proton) flux map and the projected 1968 electron environment furnished by James I. Vette. 36, 37 These flux spectra, integral in energy, are converted to spectra, differential in energy, by means of the LSSC program. These radiation spectra are tabulated in Appendix D.

Proton eye and abdomen dose rates versus thickness are shown in Figures E25 – E28 of Appendix E for various altitudes and angles of inclination. Electron eye dose rates versus altitude are shown in Figures E29 and E30 of Appendix E for two shield thicknesses and three angles of inclination.

3.0 FLARE PROGRAM

The Flare program is a Fortran IV, Monte Carlo code presently operating on the IBM 7094 and System 360/50. Its purpose is to provide an estimate, at various probability levels, of the proton and alpha fluxes in space which arise from solar flares. To this end, the Flare program processes a specified number of mission histories. The number of days per mission may range from 1 to 1000. The program considers each day in turn and determines whether a flux event occurs by sampling from a probability distribution function (pdf). The proton flux above 30 MeV is sampled from another pdf. A spectral parameter is sampled from a third pdf and this parameter also specifies the proton to alpha ratio. The proton and alpha flux, integral in energy, is computed at eight energies; 10, 30, 50, 100, 200, 400, 1000 and 1500 MeV. Then 40, 70, 90, or 100 percent of these fluxes are accumulated depending on whether 0, 1, 2 or more than 2 days remain in the mission. An inverse square correction is applied for interplanetary missions.

After each flux event, the presence of a "clustered" event is tested by means of sampling. If a clustered event occurs, it is forced to follow the primary event by 2 days. Again, the proton and alpha fluxes are determined and spread over a 4 day interval.

After each mission history is completed, the fluxes in each energy group are tabulated according to magnitude. After all histories are completed, the tabulation is converted to percent of histories which exceed certain flux levels for each energy group.

The mathematical model is based upon interpretations of data principally from the nineteenth solar cycle, 1954 - 1964. The validity of the results is, of course, dependent upon the validity of the data and upon the assumption that future activity cycles will follow the pattern of the nineteenth.

3.1 FLARE PROGRAM DESCRIPTION

There appear to be well established patterns of solar activity. 1, 3, 22, 33, 35 Allen 4 states that sunspot activity is known with high reliability back to about 1830, with fair reliability to 1749, and with low reliability to 1700. The cycle is approximately 11 years in duration, varying from 8 to 14 years. Prior to 1700, direct evidence of the solar activity cycle is not available; however, indirect observations implying cyclical patterns are available. An 11 year pattern has been found in tree rings which may be related to the solar cycle, though the causative mechanism has not been clearly defined. Brooks 15 has found that a negative correlation exists between tropical temperature and sunspots, a positive correlation exists between pressure contrasts and sunspots, and a positive precipitation correlation exists where the pressure correlation is negative and vice versa. Baktai et al 10 have detected a seven year cycle in petrified tree rings from 25 to 30 million years ago.

Various efforts have been made to study the relationship between sunspots and solar flux event (SFE) secondary characteristics such as polar cap absorption (PCA) and geomagnetic storms. ^{2,6,8,20} The correlation coefficient is generally determined to be about 0.7³², a significant but not conclusive level. It is doubtful that hazardous SFE's achieve better correlation. Indeed, Warwick ³⁹ and Bailey ⁸ have pointed out that the major SFE's of the nineteenth cycle occurred on the ascending and descending portion of the sunspot cycle, with no large events at the maximum.

Recently Gnevyshev 20 has shown a correlation between coronal glow and geomagnetic activity which reaches a value of 0.98. This very high correlation is understandable if the plasma storms which cause geomagnetic storms excite the upper reaches of the solar atmosphere as they leave the sun. It is reasonable to inquire whether high energy particle eruptions also follow the coronal cycle. No serious attempt has been made to verify such a relationship in the present study. However, since the coronal cycle is double peaked in the 11 year sunspot cycle with two to three years between the two

peaks of a cycle, ^{7,20} the hypothetical relationship should be apparent from data on SFE's. The best documented characteristic of SFE's is found in the records of PCA's.

The tabulations of PCA's published by Malitson and Webber, ²⁸ and by Bailey are combined and plotted as a bar graph in Figure 3-1. Here, the PCA's are collected in yearly increments. The plot suggests a possible double peak. The smooth curve fitted to the bar graph represents the sum of two beta distributions with an arbitrary minimum set equal to three percent of the largest maximum.

A possible seasonal effect has been suggested by Anderson. Such an effect has been sought in the present data. Despite relatively poor statistics, a winter-summer asymmetry does appear as shown by the bar graph of Figure 3-2.

The difference between the average number of winter SFE's and summer SFE's over ten years of the nineteenth cycle has been tested by the "t" test of significance between two sample means for paired variates. The probability that this difference is random is less than 0.12. Over the five most active years, the probability that this difference is random is 0.032. These results indicate that the winter-summer asymmetry should not be ignored. In order to realize this asymmetry, a sinusoidal variation is imposed on the pdf as shown in Figure 3-2.

The smooth curve of Figure 3-1 is constructed from the sum of two beta distributions as shown in Figure 3-3.

$$F(t) = f_1(t) + f_2(t)$$
 $0 \le t \le 1$ (3-1)

where

$$f(t) = kt^{\alpha} (1-t)^{\beta}$$
, and

t = number of days from start of cycle/4017.

The three constants for each function are computed from input data; t₁, t₂, t₃, y₁,

FIGURE 3-1 SOLAR FLUX EVENTS IN THE 19TH CYCLE

FIGURE 3-2 SOLAR FLUX EVENTS IN THE 19TH CYCLE SHOWING SUMMER-WINTER ASYMMETRY - C = 0.4

 y_2 , and y_3 . The first beta distribution is determined by the values t_1 , t_3 , y_1 , and y_3 .

$$f_1(t) = y(t) = k t^{0} (1 - t)^{\beta}$$

The derivative of y(t) at t_1 is zero; this condition permits the evaluation of α in terms of β and t_1 .

$$\alpha = \frac{\beta + 1}{1 - t_1} \tag{3-2}$$

At t₁ and t₃, respectively,

$$y_1 = k t_1^{\alpha} (1 - t_1)^{\beta}$$

 $y_3 = k t_3^{\alpha} (1 - t_3)^{\beta}$

Dividing, taking logarithms, and solving,

$$\beta = \frac{\ln (y_3/y_1)}{\frac{t_1}{1-t_1} \ln (t_3/t_1) + \ln \frac{1-t_3}{1-t_1}}$$
(3-3)

Finally,

$$k = \frac{y_1}{t_1^{\alpha} (1 - t_1)^{\beta}}$$
 (3-4)

The second beta distribution is determined in a similar manner using t_2 , t_3 , y_2 , and y_3 . Because the probability distribution function is too small near the endpoints of Figure 3-1, these values are raised to three percent of the highest peak.

A sinusoidal variation, to depict the summer-winter asymmetry, is imposed on the above probability distribution function in the following manner.

$$F(t) = (f_1(t) + f_2(t)) (1 + C \sin(wt + \gamma))$$
 (3-5)

where

 $w = 22\pi$, and

 $\gamma = -\pi/2.$

The constant "C" is termed the summer-winter asymmetry parameter. A value of 0.4 produces the curve shown in Figure 3-2. The pdf, F (t), is normalized to the number of primary solar flux events during the solar cycle.

The occurrence of a solar flux event on any given day of a mission history is determined stochastically from F (t). If an event occurs, the Flare program selects the magnitude of the flux greater than 30 MeV from a pdf. The "size" pdf is constructed from the tabulated fluxes in Appendix A. The events for which no fluxes are indicated in Appendix A are assumed to have integral fluxes between 10⁶ and 10⁷ particles per square centimeter above 30 MeV because the sensitivity threshold of the instruments measuring PCA's lies in this range for fairly short events. Gregory 21 states that radio backscatter techniques are much more sensitive than riometers. A list of 1960 SFE's detected by the radio backscatter technique but not detected as PCA's is given in Appendix B. In the present study, such events are assumed to have integral fluxes between 10^5 and 10^6 particles/cm² above 30 MeV. If the ratio of 1960 events with fluxes greater than 10^5 to those with fluxes greater than 10^6 is applied to all PCA events in the nineteenth cycle, then the total number of events with fluxes greater than 10^5 is approximately 250. These data are plotted on Figure 3-4. The points lie approximately on a straight line on a log-log scale. The cumulative distribution, G (Φ) , versus flux, Φ , of Figure 3–4 may be expressed as:

$$G(\Phi) = H\Phi^{Q} + constant$$
 (3-6)

FIGURE 3-4 CUMULATIVE EVENT DISTRIBUTION VERSUS TIME-INTEGRATED OMNIDIRECTIONAL FLUX

The differential distribution is:

$$g(\Phi) = HQ\Phi^{Q-1}$$
 (3-7)

The constants H and Q are evaluated from the following equations.

$$G(10^{5}) = 250 = \int_{0}^{\infty} H Q \Phi^{Q-1} d\Phi = -H 10^{5Q}$$

$$10^{5}$$

$$G(10^{9}) = 5 = \int_{0}^{\infty} H Q \Phi^{Q-1} d\Phi = -H 10^{9Q}$$

$$10^{9}$$

With the values of H and Q determined, it is now possible to sample from the normalized cumulative size distribution function above 10^5 P/cm^2 per flare.

$$R = \int_{10^5}^{\Phi} H Q X^{Q-1} dX = H\Phi^Q - H 10^{5Q};$$
 (3-8)

where R is a random number from the uniform distribution between zero and one. This distribution would occasionally select very large SFE's. In the present study, the maximum size is restricted to a value of 10¹¹, many times the largest observed. By modifying Equation 3-8,

$$R = \frac{\int_{0}^{\Phi} H Q X^{Q-1} dX}{\int_{10^{5}}^{10^{11}} H Q X^{Q-1} dX} = \frac{H \Phi^{Q} - H 10^{5Q}}{H 10^{11Q} - H 10^{5Q}},$$
 (3-9)

or

$$\Phi = \left[R \left(10^{11Q} - 10^{5Q} \right) + 10^{5Q} \right]^{1/Q}$$
 (3-10)

The value of Φ given in Equation 3-10 refers to time-integrated proton flux above 30 MeV for one flare.

The problem of determining the proton spectrum for a given flare is made difficult by a scarcity of data. The spectrum of the time-integrated flux may be exponential in rigidity or occasionally power law in energy. It is not yet feasible to demonstrate spectral dependence on flux magnitude. In this study all spectra are assumed to be exponential in rigidity from 10 to 1500 MeV and independent of the size of the event. The former assumption is probably not valid below 30 MeV. The available data for 31 time-integrated spectra are plotted in Figure 3-5. Here, the number of flares with characteristic rigidity greater than p is plotted versus p, where p is defined as:

$$\Phi(p) = \Phi_{0} e^{-p/p_{0}}$$
(3-11)

The points exhibit a reasonably small scatter about a straight line so it is possible to represent the cumulative number of flares, N, versus p as:

$$\ln \left[N \left(p_{o} \right) \right] = a p_{o} + b$$
(3-12)

The observed values of p_o range from 50 to 270 MV. Arbitrary bounds of 40 and 300 MV are imposed in this study. The constants a and b are evaluated using points obtained from the straight line on Figure 3-5.

In
$$[N(40)] = In(40) = a \cdot 40 + b$$

In $[N(300)] = In(.37) = a \cdot 300 + b$.

FIGURE 3-5 CUMULATIVE NUMBER OF FLARES CHARACTERIZED BY PO OR GREATER VERSUS PO

Let

$$K = \frac{\ln (40/.37)}{260};$$

Then
$$a = -K, (3-13)$$

and
$$b = \ln 40 + 40 K;$$
 (3-14)

thus,
$$N(p_0) = 40 e^{K(40 - p_0)}$$
. (3-15)

Differentiating, integrating, truncating, normalizing, and setting the pdf equal to a random number as before,

$$R = \frac{\int_{0}^{P_{o}} 40 \, \text{Ke}^{\text{K} (40 - \text{X})} \, d\text{X}}{\frac{40}{300} + \frac{300}{40} + \frac{40 \, \text{Ke}^{\text{K} (40 - \text{X})}}{40} \, d\text{X}}$$
(3-16)

which reduces to

$$p_0 = 40 - \frac{260}{\ln (40/.37)} \ln \left[1 - R \left(1 - \frac{.37}{40} \right) \right]$$
 (3-17)

as a means of selecting p_0 .

Determination of the alpha particle component of solar flux events is based on a smaller body of available data 40 than parameters derived heretofore. Where data is available, the alpha spectrum, integral in rigidity, is usually parallel to the corresponding proton spectrum for the same event. Thus, the same value of pomay be used for protons and alphas. Webber 40 presents the data plotted in Figure 3-6. This plot shows

that the proton to alpha ratio approximates a power law function of p_0 (averaged over an event) for the nine cases studied. For p_0 less than 80 MV, the proton to alpha ratio is unity. Note that for a given rigidity p, the proton flux, integral in rigidity, above p is a factor of P/α larger than the alpha flux, integral in rigidity, above the same rigidity. Given the value p_0 from Equation 3-17, the P/α ratio from Figure 3-6 is:

$$P/\alpha = 1 40 \le p_0 \le 80$$

$$P/\alpha = \exp \left[\frac{\ln (p_o/80) \ln 60}{\ln (275/80)} \right] \quad 80 < p_o \le 300 \quad (3-18)$$

With the aid of the model described above, the proton and alpha spectra, integral in energy, may be derived.

The Flare code determines the value of such spectra at eight energies; 10, 30, 50, 100, 200, 400, 1000, and 1500 MeV. Rigidities corresponding to these energies are computed for the protons as follows:

$$P_i = (E_i^2 + 2.938.21 E_i)^{1/2}$$
 (3-19)

For the alphas, the equation is:

$$p_{i} = \frac{1}{2} (E_{i}^{2} + 2 \cdot 3727.23 E_{i})^{1/2}. \qquad (3-20)$$

If the value of proton rigidity corresponding to 30 MeV is denoted as p_{30} , then the proton flux, integral in energy, at E. is:

$$\Phi_{p}(E_{i}) = \Phi_{p}(p_{i}) = \Phi_{p}(p_{30}) e^{(p_{30} - p_{i})/p_{o}}$$
 (3-21)

FIGURE 3-6 PROTON/ALPHA RATIO AS FUNCTION OF PO

The alpha flux, integral in energy, is

$$\Phi_{\alpha}(E_{j}) = \Phi_{\alpha}(p_{j}) = \frac{\Phi_{p}(p_{30}) e^{(p_{30} - p_{j})/p_{o}}}{P/\alpha}$$
(3-22)

The Flare program assumes that the probability of encountering an SFE is independent of distance from the Sun. The flux intensities, derived above, may be attenuated by an inverse square law if desired. For this purpose, an elliptical transfer trajectory may be specified for the trip from the Earth to a planet together with a second elliptical trajectory for the return trip. The Sun is at one focus of both trajectories. The influence of other bodies in the solar system is ignored. The method used to compute the distance from the Sun to the vehicle as a function of time is derived from a program originated at the George C. Marshall Space Flight Center, NASA.

The distance from the Sun to a point on the trajectory in polar coordinates is:

$$r = \frac{\alpha (1 - \epsilon)}{1 + \epsilon \cos \theta}$$
 (3-23)

where

a = semi-major axis of ellipse,

 ϵ = eccentricity of ellipse, and

 θ = initial angle in polar coordinates.

A variable, y, may be defined:

$$y = \frac{a - r}{a \epsilon} = \frac{\epsilon - \cos \theta}{1 + \epsilon \cos \theta}$$
 (3-24)

Time, expressed as a function of position, is: 34

$$t = \frac{\alpha^{3/2}}{\mu^{1/2}} \left[\sin^{-1} \left(\frac{\sqrt{1 - \epsilon^2} \sin \theta}{1 + \epsilon \cos \theta} \right) - \frac{\sqrt{1 - \epsilon^2} \sin \theta}{1 + \epsilon \cos \theta} \right]$$
 (3-25)

which transforms to

$$t = a^{3/2} \mu^{-1/2} (\cos^{-1} y - \epsilon \sqrt{1 - y^2})$$
 (3-26)

with

$$\mu^{-1/2} = 58.18 \, \text{days/(A.U.)}^{3/2}$$

Given a value of t, a value of y is obtained by Newton-Raphson iteration. The distance and angle for each day of the trajectory may be obtained from y.

$$r(t) = \alpha(1 - \epsilon y(t)) \qquad (3-27)$$

$$\theta(t) = \cos^{-1}\left(\frac{\epsilon - y(t)}{\epsilon y(t) - 1}\right)$$
 (3-28)

A subroutine of the Flare program computes the values of r for each day of the mission. The input data required for this calculation includes initial and final values of the time, t, in Julian days and the polar angles, θ , in degrees, plus the eccentricity for each leg of the mission. A Julian calendar is presented in Appendix C.

Having determined the occurrence of an event, its magnitude, and integral spectrum, the total flux for this event is distributed over a four day interval, 40 percent on the day of onset, 30 percent on the day following, 20 percent on the third day, and 10 percent on the fourth day. However, if the mission terminates on any of the first three days, the flux assigned to following days is neglected.

The occurrence of an SFE may herald a series of similar events. The data in Appendices A and B indicate that 75 percent of the primary events are followed within four days by a "secondary" event. Calculations based on the SFE occurrence pdf show that only one third of these clustered events may be attributed to chance. Hence, the Flare program forces a secondary event to follow, in two days, a primary event approximately 50 percent of the time by a stochastic process.

The fluxes in each energy group are accumulated for each mission history. After each history is processed, the magnitude of the integral flux above each energy is tabulated in intervals ranging from 10^2 to $8 \cdot 10^{12}$. At 10 and 30 MeV, each event will produce at least $0.4 \cdot 10^5$ protons per square centimeter because 10^5 is the smallest flux sampled at 30 MeV, and only 40 percent of the flux is accumulated on the last day of the mission. After all histories are processed, this tabulation is converted to percent of missions which exceed various flux levels for each energy group. Sample output is shown in Appendix G.

The computer time required by the Flare program may be estimated as follows. A quantity termed mission days is obtained by multiplying the desired number of mission histories times the number of days in the mission. The time in seconds required by the IBM System 360/50 is the number of mission days divided by 800. The IBM 7094 will require less time.

3.2 GLOSSARY OF INPUT DATA TERMS

RND	the initial random number, a 10 digit odd number
HEAD	the heading information which may be used to identify each case,
	columns 1 through 72 are available
TI	the number of days from the start of the solar cycle at which the
	first activity peak occurs (see Figure 3–3), 0 < T1 < 4017
T2	the number of days from the start of the solar cycle at which the
	second activity peak occurs (see Figure 3–3)

Т3	the number of days from the start of the color and a start of the
	the number of days from the start of the solar cycle at which the two beta distributions cross (see Figure 3–3)
Υl	
	the relative height of the first peak (see Figure 3-3)
Y2	the relative height of the second peak (see Figure 3–3)
Y3	the relative height of each beta distribution at T3 (see Figure 3-3)
С	winter-summer asymmetry parameter, the recommended value is 0.4
SEC	the probability of a single clustered event following a primary
	event in two days, the recommended value is 0.5
SIZE	the number of solar flux events in a solar activity cycle relative
	to the number in the nineteenth cycle, a value of unity is used in
	the present study
NHIS	the number of mission histories to be processed by the Monte Carlo
	Flare program. If NHIS is negative, the SFE probability will be
	printed at intervals of (-NHIS) days from JLE to JRE and the flux
	calculation will be omitted
JLE	the Julian calendar day of the start of the mission
JRE	the Julian calendar day of the end of the mission
JAP	the Julian calendar day at which the vehicle arrives at another
	planet. A value of zero causes the solar distance to be set to
	unity for each day of the mission
JLP	the Julian calendar day at which the vehicle leaves another plan-
	et. If JAP is zero, JLP may be omitted
THI	the angle in degrees between the Earth-Sun line and the major
	axis of the outbound elliptical trajectory at departure time, JLE
TH2	the angle in degrees between the target planet–Sun line and the
	major axis of the outbound elliptical trajectory at arrival time,
	JAP
тнз	the angle in degrees between the target planet—Sun line and the
	major axis of the return elliptical trajectory at departure time,
	JLP

the angle in degrees between the Earth-Sun line and the major axis of the return elliptical trajectory at arrival time, JRE

the eccentricity of the outbound elliptical trajectory

the eccentricity of the return elliptical trajectory

3.3 INPUT DATA PREPARATION

The following cards follow the / DATA (360) or the \$ DATA (7094) card.

CARD TYPE 1 Columns 1 - 10 contain the initial random number, RND. Format (110).

CARD TYPE 2 Columns 1 -72 contain heading information, HEAD. Format (18A4).

CARD TYPE 3 This card specifies T1, T2, T3, Y1, Y2, Y3, and C. Format (7E10.1).

CARD TYPE 4 This card specifies SEC and SIZE. Format (2E10.1).

CARD TYPE 5 This card specifies NHIS, JLE, JRE, JAP, and JLP. Format (5110).

CARD TYPE 6 This card specifies TH1, TH2, TH3, TH4, E1, and E2. This card is omitted if JAP is zero and all Sun-vehicle distances will be set to 1.0 A.U. Format (6E10.1).

NOTE: Additional cases may be run by repeating from Card Type 2.

3.4 FLARE PROGRAM OUTPUT

The Flare program prints the information contained in HEAD and the input data. It

then gives the percent of mission histories which encountered no solar flux events. A table whose columns are labeled T, R, and F follows. The quantity T refers to the day in the solar activity cycle in which the mission takes place. The quantity R is the Sun-vehicle distance in astronomical units. If JAP is zero or if NHIS is negative, R will be set to unity. The quantity F is the probability of encountering a primary solar flux event on that day (see Equation 3–5). Following this table, the input random number, the first random number of this case, and the last random number of this case are given. Finally, tables of proton and alpha integral flux probabilities versus flux and energy are presented. Sample problem input and output are shown in Appendix G. The first set of flux probability tables is produced by the IBM 7094. The second set is produced by the IBM System 360/50. The results differ because different random number routines are used.

4.0 DOSE PROGRAM

The Dose program calculates proton, alpha, and electron physical doses (or dose rates) at points associated with a geometric configuration. The doses due to proton and alpha induced secondaries are included in these estimates; however, no bremsstrahlung calculation is attempted. This program obtains the geometric data from a magnetic tape generated by the Geometry program (The Geometry program is described in detail in Section 3 of Volume II). The flux data, range parameters for the materials involved, and other data applicable to the various materials in the configuration are input directly.

The Dose program approximates the proton and alpha input spectra, differential in energy, with from one to one hundred power law representations over the energy range of interest for each radiation type. The electron spectrum is treated in tabular form. Proton and alpha particle attenuation through shield materials is accomplished by the same technique described for protons in Section 5, Volume II. This method is described again in Section 4.1 of this volume for the reader's convenience. The electron transmission calculation is presented in Section 4.2.

The degree of accuracy of these transmission calculations has been established only for protons (Sections 5 and 5.1, Volume II) and electrons; sufficient data pertaining to alpha transport is not presently available. The accuracy of the proton dose calculation is dependent on the incident proton spectrum, the shield materials, and the total thickness. In comparison with the Lockheed Proton Penetration Code (LPPC), the proton dose calculation differs by less than 7 percent from 0 to 100 gm/cm² of iron, less than 7 percent from 0 to 100 gm/cm² of water and less than 3 percent from 0 to 100 gm/cm² of aluminum. Dose calculations involving multi-layer shields of aluminum, iron, polyethylene, and tissue (totalling 20 gm/cm²) differ from LPPC results by no more than 2.4 percent. The electron transmission calculation is compared with the work of Berger and Seltzer; 11, 12 number transmission and transmitted energy spectra for thin shields are exhibited in this comparison.

4.1 PROTON AND ALPHA DOSE CALCULATION

An expression of the physical dose or dose rate at a detector is given by:

$$D_{i} = K \sum_{i=1}^{N} \Omega_{i} \int_{0}^{\infty} B(X_{i}, E) \cdot P(X_{i}, E) \cdot S_{i}(E) dE; \qquad (4-1)$$

where

D: = dose (rad) or dose rate at the jth detector,

K = energy deposition-to-dose conversion factor,

 $\Omega_{::}$ = ith solid angle of the ith detector,

X: = penetration lengths (gm/cm²) through all materials in ith solid angle of the ith detector,

B(X; E) = correction factor to account for nuclear collision losses of primary particles with energy E and the production and attenuation of secondary radiations,

P(X;, E) = particle flux, differential in energy, arriving within the ith solid angle of the jth detector, and

 $S_{i}(E)$ = particle stopping power in the i^{th} detector material.

Each of these factors is discussed in turn. The approximations required for computational purposes are illustrated and the transport equations used in the code are detailed.

The basic dose unit is chosen to be the rad. A physical dose, D., is calculated rather than a biological dose because information on RBE for the radiations of interest is rather sparse. The use of physical dose units also permits components other than biological specimens to be treated, e.g., photographic emulsion and semiconductors.

The factor, K, converts energy deposition in the detector to dose units. For example, if the units of stopping power are MeV-cm²/gm and the units of time-integrated particle flux are p/cm^2 -MeV-ster, the value of K is 1.602×10^{-8} rad-gm/MeV. If

particle flux is given as p/cm 2 -sec-MeV-ster, the dose rate may be computed in terms of rad/hr with K equal to 5.76×10^{-5} rad-gm-sec/MeV-hr.

The quantity, Ω_{ij} , represents an incremental solid angle about a vector emanating from the detector. The vector possesses direction cosines α , β , and γ . The maximum size of Ω_{ij} is specified by input data to the Geometry program. Generally, a maximum of 0.2 steradians, generating approximately 100 incremental solid angles, has proved satisfactory.

The quantity X_{ij} in Equation 4-1 represents shield penetration lengths along the vector in Ω_{ij} . The representation is symbolic. Actually, the code treats radiation transport through each layer in sequence in a multi-material shield configuration starting at the outside and going to the detector.

The radiation transport method used in Equation 4-1 makes no explicit reference to the generation and attenuation of secondary radiations, nor to the attenuation of primary particles due to nuclear collisions. To some extent the lack of generating secondary nucleons compensates the lack of attenuation of the primary particles by nuclear collisions which generate the secondaries. In order that the error resulting from this assumption may be corrected, a factor, B(X;; E), is included in Equation 4-1.

$$B(X_{ij}, E) = \sum_{k=1}^{M} \exp(\epsilon X_{ijk} \cdot A_{k}/27)$$
 (4-2)

 $X_{ijk} = k^{th}$ material thickness in i^{th} solid angle for the j^{th} detector; $A_k = material$ -dependent parameter (effective atomic weight);

 ϵ = .00125, protons; and

 ϵ = .050, alphas.

The value of € for protons is derived from comparisons of Dose program results with

LPPC results. The value of ϵ for alphas is estimated indirectly because no transport code similar to LPPC exists for alphas.

Figures F1 through F5 of Appendix F present neutron yield cross sections ^{30, 31} for proton and alpha particles incident on manganese-55, nickel-58, nickel-62, iron-56, and copper-63. The curves represent the sum of the listed cross sections, each of which are multiplied by the neutron multiplicity for that reaction. These data are, for the most part, derived from activation measurements and are not comprehensive. The neutron yield should rise with increasing energy below 50 to 100 MeV, as shown in Figure F6 for alpha interactions ³⁸ with gold-197 (the Coulomb barrier favors neutron production in heavy neclei). Based upon the incomplete data cited above, the assumption is made that neutron yield from alpha interactions is twice the yield from proton interactions per target nucleus.

The data for charged particle production are also scanty. Bailey gives proton yields from 190 MeV proton and 205 MeV alpha bombardment of aluminum and silver. For aluminum, alphas generate two times more secondary protons above 10 MeV than do protons (secondary protons below 10 MeV generated in the shield do not contribute significantly to the dose). For silver, the ratio is one third.

An indirect measure of the ratio of alpha produced secondaries to proton produced secondaries is available from radiochemical data. Korteling and Hyde have measured the yield of 13 radioisotopes resulting from alpha and proton bombardment of niobium-93 at 320, 500, and 720 MeV, as shown in Table 4-1. Crespo, Alexander, and Hyde have measured sodium-24 and magnesium-28 yields from 700 MeV alpha and proton bombardment of copper, silver, gold, and uranium as shown in Table 4-2. The data of Tables 4-1 and 4-2 show a factor of approximately two in the ratio of alpha and proton produced radioisotopes for medium to heavy nuclides in the energy range 300 to 700 MeV. It is not unreasonable to assume that these ratios are representative of the unreported daughter isotopes. If the daughter isotopes result from

PRODUCTION CROSS SECTIONS FROM ALPHA BOMBARDMENT OF NIOBIUM AND RATIO OF ALPHA TO PROTON INDUCED CROSS SECTIONS 27

	320	MeV	500 A	MeV	720	720 MeV	
Nuclide	σ _α (mb)	σ _α /σ _p	σ _α (mb)	σα/σρ	σ_{α} (mb)	σ _n /σ _p	
Nb-90	129.	2.33	97.2	2.03	83.5	2.24	
Nb-89	46.8	2.13	33.5	1.99	27.8	1.99	
Zr-89	111.	1.84	81.4	1.80	73.9	1.90	
Zr-88	145.	2.01	105.	1.92	93.1	2.19	
Zr-87	92.2	2.15	65.8	1,99	55.9	2.12	
Cu-67	.0108	2.05	.0715	2.42	.166	1.38	
Cu-64	.173	1.65	.145	1.97	4.34	1.54	
Cu-61	.0442	1.28	.65	1.55	2.59	1.49	
Ni-66	.00106	2.76	.0073	2.53	.0192	2.29	
Ni-65	. 00607	1.91	. 0408	1.83	.121	1.92	
Ni-57	. 00554	3.03	.036	1.94	.143	1.94	
Na-24	. 0432	2.89	.113	2.62	. 300	2.29	
Na-22	. 0468	2.92	.0864	3.34	.196	2.27	
Average		2.23		2.15		1.97	

PRODUCTION CROSS SECTIONS FROM 700 MeV ALPHA BOMBARDMENT AND RATIO OF ALPHA TO PROTON INDUCED CROSS SECTIONS 18

_	Na-	-24	Mg-28		
Target	σ _α (mb)	σ _α /σ _p	σ _α (mb)	σ _α /σ _p	
Cυ	.698	1.9	.091	1.85	
Ag	.227	2.27	.026	2.17	
Aυ	.308	2.28	.102	1.85	
U	. 502	2.18	. 238	2.07	
Average		2.16		1.99	

similar de-excitation processes for alpha and proton bombardment, then the ratio of alpha produced secondaries to proton produced secondaries should be approximately two.

In this study, the assumption is made that alpha interactions generate twice as many charged and neutral secondaries per target nucleus as protons. Further, it is observed that the majority of particles in a typical flare spectrum will be stopped in the first gm/cm^2 . For a given initial energy, proton range is ten times alpha range. Thus, the secondaries generated by alphas are approximately 2/10 those generated by protons for identical alpha and proton spectra in shields thicker than a few gm/cm^2 . This ratio may be realized by setting the quantity ϵ , of Equation 4-2, to 0.05 for alpha fluxes.

In order to compute the particle flux, $P(X_{ij}, E)$, arriving at the i^{th} detector through the i^{th} solid angle, it is necessary to consider the range relations for particles penetrating a multi-layer shield. The range is approximated by Equation 4-3.

$$R(E) = \frac{a}{2b} \cdot \ln(1 + 2bE^{r}) \tag{4-3}$$

where

R(E) = particle range at energy E, and

a, b, r = parameters (particle dependent).

Values of a, b, and r are presented in Volume 1 of this report for a variety of materials for both proton and alpha particles.

The range of a particle, with energy E_0 , incident upon a material of thickness X is related to the range of the transmitted particle, with energy E_1 , by:

$$R(E_{\Omega}) = X + R(E_{1}) \tag{4-4}$$

or

$$\frac{a}{2b}$$
 $\ln(1 + 2bE_0^r) = X + \frac{a}{2b} \ln(1 + 2bE_1^r)$ (4-5)

Solving Equation 4-5 for E_0^r :

$$E_{O}^{r} = A + BE_{1}^{r} \tag{4-6}$$

where

$$B = e \times p(2bX/a)$$

$$A = \frac{B-1}{2b}$$

Equation 4-6 relates the exit energy to the incident energy for particles penetrating one material.

The above treatment may be readily generalized to multilayer shields. Given two layers, X_1 and X_2 , of different materials, the exit energies E_1 and E_2 are related to the incident energy E_0 by:

$$E_0^r = A_1 + B_1 E_1^r$$
 (4-7)

$$E_1^r = A_2 + B_2 E_2^r$$
 (4-8)

Substituting Equation 4-8 into 4-7,

or
$$E_{o}^{r} = A_{1} + B_{1} A_{2} + B_{1} B_{2} E_{2}^{r}$$

$$E_{o}^{r} = A' + B' E_{2}^{r}.$$
(4-9)

For M layers

$$E_o^r = A' + B'E_M^r , \qquad (4-10)$$

where

$$\begin{array}{lll} B' & = & B_1 B_2 B_3 \cdot \cdot \cdot \cdot B_{M'} \\ A' & = & A_1 + A_2 B_1 + A_3 B_1 B_2 + \cdot \cdot \cdot \cdot + A_M B_1 B_2 \cdot \cdot \cdot \cdot B_{M-1'} \\ B_k & = & \exp(2b_k X_k/a_k), \text{ and} \\ A_k & = & (B_k - 1)/2b_k. \end{array}$$

It should be noted that the value of r is assumed to be material independent in the above treatment while a and b are material dependent.

The particle flux penetrating the shield along the ith vector of the ith detector is related to the incident flux by Equation 4-11. This equation presumes conservation of particles. Corrections due to nuclear interactions and secondaries are discussed above.

$$P(X_{ij}, E_M) dE_M = P(0, E_0) dE_0$$
 (4-11)

The exit energy, E_M, as determined from Equation 4-10, must be non-negative.

The incident flux over an energy interval, E_1 to E_{1+1} , is represented by a power law expression:

$$P(0, E_0) = H_1 E_0^{-q_1}, E_1 \le E_0 \le E_{1+1}$$
 (4-12)

One to one hundred intervals may be used over the entire energy range.

The differential of Equation 4-10 is:

$$dE_{o} = (A' + B'E_{M}^{r})^{\frac{1-r}{r}} dE_{M}.$$
 (4-13)

The flux at the detector is obtained by substituting Equations 4-10, 4-12, and 4-13 into 4-11.

$$P(X_{ij'}, E_M) dE_M = H_i B'E_M^{r-1} (A' + B'E_M^r) dE_M (4-14)$$

with the restrictions

$$E_{j}^{*} \leq E_{M} \leq E_{j+1}^{*}$$

$$(4-15)$$

$$E_{j}^{*} = Max \left[0, \left(\frac{E_{j}^{r} - A^{1}}{B^{1}} \right)^{\frac{1}{r}} \right]$$

$$E_{j+1}^{*} = Max \left[0, \left(\frac{E_{j+1}^{r} - A'}{B} \right)^{\frac{1}{r}} \right].$$
 (4-15 cont'd)

The stopping power of the detector material is given by:

$$S_i^{(E_M)} = \frac{1}{\left(\frac{dR(E)}{dE}\right)_{E_M}}$$

where, from Equation 4-3:

$$\frac{dR(E)}{dE} = \frac{aj rj E^{rj-1}}{(1+2bj E^{rj})},$$

or

$$S_{i}(E) = \frac{1 + 2b_{i} E^{r_{i}}}{a_{i} r_{i} E^{r_{i}} - 1}$$
 (4-16)

Here, the parameters a, b, and r are subscripted with the detector subscript, j, to indicate that energy is deposited in the detector material. Note that a single value of r must be used for computing slowing of a particle through all shield materials but an optimum value may be used to compute energy deposition by a particle in the detector material to improve accuracy. In general, the values of the parameters a, b, and r will differ with particle type.

Applying Equations 4–2, 4–14, 4–15, and 4–16 to 4–1, the dose at the i^{th} detector may be written as follows:

$$D_{i} = K \cdot \sum_{i=1}^{N} \Omega_{ij} \prod_{k=1}^{M} \exp(\epsilon X_{ijk} \cdot A_{k}/27) \sum_{l=1}^{L-1} H_{l} \cdot I_{l}(E_{l}^{*}, E_{l+1}^{*}).$$
 (4-17)

For non-zero shield thickness,

$$I_{I}(E_{I}^{*}, E_{I+1}^{*}) = B' \int_{E_{I}^{*}}^{E_{I}^{*}+1} \frac{E_{M}^{r-1}(A'+B'E_{M}^{r})}{a_{I}r_{I}E_{M}^{r_{I}-1}} (1+2b_{I}E_{M}^{r_{I}}) dE_{M}.$$
(4-18)

The following change of variable transforms Equation 4-18 into a form involving incomplete beta functions.

$$t = \frac{B'E_{M}^{r}}{A' + B'E_{M}^{r}}, \quad E_{M} = \left[\frac{A't}{B'(1-t)}\right]^{1/r}$$

$$dE_{M} = \frac{1}{r} \cdot \left(\frac{A'}{B'}\right)^{1/r} \cdot \frac{\frac{1-r}{r}}{\frac{1+r}{r}} dt$$

$$(1-t)^{\frac{1-r}{r}}$$

which leads to

$$I_{1}(E_{1}^{*}, E_{1+1}^{*}) = K_{0} \left[\beta_{\alpha_{2}}(u, v) - \beta_{\alpha_{1}}(u, v) + K_{1}\beta_{\alpha_{2}}(u', v') - K_{1}\beta_{\alpha_{1}}(u', v')\right]$$

$$(4-19)$$

where

$$K_{0} = \frac{2 - q_{1} - r_{1}}{r}$$

$$K_{1} = 2b_{1} \left(\frac{A'}{B'}\right)^{\frac{r_{1}}{r}}$$

$$\beta_{\alpha}(v, v) = \int_{0}^{\alpha} t^{v-1} \cdot (1-t)^{v-1} dt$$

$$v = \frac{1-r_{j}-r}{r}$$

$$v' = \frac{q_{j}+r_{j}-2}{r}$$

$$v' = \frac{q_{j}-2}{r}$$

$$\alpha_{2} = \text{Max} \left[0, 1-\text{A'E}_{j+1}^{-r}\right]$$

$$\alpha_{1} = \text{Max} \left[0, 1-\text{A'E}_{j}^{-r}\right]$$

 E_1 and E_{1+1} are specified by Equation 4-12.

The incomplete beta function is evaluated by:

$$\beta_{\alpha}^{-}(\upsilon, \upsilon) = \frac{\alpha^{\upsilon}}{\upsilon} \cdot F(\upsilon, 1 - \upsilon, \upsilon + 1, \alpha)$$
 (4-20)

for $0 < \alpha < 1$ with v negative and for $0 < \alpha \le 1/2$ with v positive. If v is positive and $1/2 < \alpha < 1$,

$$\beta_{\alpha}(\upsilon, \upsilon) = \frac{\Gamma(\upsilon) \cdot \Gamma(\upsilon)}{\Gamma(\upsilon + \upsilon)} - \beta_{1-\alpha}(\upsilon, \upsilon). \tag{4-21}$$

Here, F(a, b, c, x) is the hypergeometric series.

$$F(a, b, c, x) = 1 + \frac{ab}{c} \cdot x + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{x^2}{2!} + \dots$$
 (4-22)

The hypergeometric series is truncated at a point where the last term does not contribute to

the eighth significant figure.

For zero thickness shields or for high energy particles penetrating thin shields, Equation 4-18 takes the following form.

$$I_{i}(E_{i}^{*}, E_{i+1}^{*}) = \frac{B_{i}^{'}}{a_{i}r_{i}} \int_{E_{i}^{*}}^{E_{i+1}^{*}} \int_{E}^{1-q_{i}-r_{i}^{*}} \cdot (1+2b_{i}E^{r_{i}^{*}}) dE$$
 (4-23)

The code evaluates analytical solutions of this equation for all values of the exponents.

The dose at the jth detector is obtained by means of Equation 4-17, using 4-18 or 4-23 as appropriate.

4.2 ELECTRON DOSE CALCULATION

The expression for the electron physical dose or dose rate at a detector is given by:

$$D = K \sum_{i}^{\infty} \Omega_{i} \int_{0}^{\infty} \Phi(E^{*}) T(X, E^{*}) C_{0} \int_{0}^{E} S(E) E^{\beta} (E_{U} - E)^{\alpha} dE dE^{*}$$
 (4-24)

where

D = dose (rad) or dose rate at a detector (detector subscripts are omitted),

K = energy deposition-to-dose conversion factor,

 $\Omega_{:} = i^{th} \text{ solid angle,}$

E* = incident electron energy,

E = exit electron energy,

 Φ (E*) = incident electron flux - e/cm²-MeV-ster-(sec),

 $X = \text{shield thickness - gm/cm}^2$

 $T(X, E^*)$ = electron number transmission factor,

S(E) = stopping power - MeV-cm²/gm,

C = normalization factor, a function of X and E*,

 $E_{_U}$ = upper energy of transmitted electron spectrum arising from electron with original energy E*, a function of X and E*, and α , β = parameters defining shape of transmitted electron spectrum, func-

The transmitted electron spectrum, arising from incident electrons with energy E*, is assumed to have a shape given by the beta distribution, $E^{\beta}(E_{\perp}-E)^{\alpha}$.

For the purpose of electron transmission, multi-material shields are simulated by equivalent aluminum shields. The equivalent aluminum thickness is obtained by the following relation:

$$X_{Al eq.} = \sum_{k=1}^{L} X_k \frac{Z_k}{A_k} \frac{A_{Al}}{Z_{Al}}$$

tions of X and E*.

where

XAI eq.
 Xk
 Zk, Ak
 atomic number and weight of material in the kth layer, and atomic number and weight of aluminum.

The electron number transmission factor is computed using;

$$T(X, E) = \exp \left(-(C_1 E)^{C_2}\right)$$
 (4-25)

where

$$C_1 = (.585 \cdot 13^{-.271}/X)^{.848}$$
, and $C_2 = -14.5 \cdot 13^{-.48}$.

This empirical equation was derived by Mar²⁹ using Monte Carlo data. The equation assumes normally incident electrons in the energy range 0.1 to 10. MeV.

The electron stopping power in water (as an approximation to tissue) is expressed analytically by the relation:

$$S(E) = A \cdot E + B + C/E \qquad (4-26)$$

A = .061729277,

B = 1.6119395, and

C = .2460117.

This expression is obtained, from Berger and Seltzer's data, 13 by a least squares fit of E · S(E) to A · E 2 + BE + C. The maximum error of the analytic representation is 3.8% on the energy interval .025 to 10. MeV. A graph of E · S(E) versus E is shown in Figure 4-1.

An analytical expression for electron range in aluminum, obtained by application of the least squares technique to Berger and Seltzer's range data, ¹³ is given by the following relation:

$$R(E) = cE^{\alpha \ln E + b}$$
 (4-27)

a = -.09391135,

b = 1.2204666, and

ln c = -.60608292.

The maximum error of this relation is 7.4 percent on the energy interval .02 to 10. MeV. The error curve is shown in Figure 4–2.

In the electron transport model, the assumption is made that the transmitted energy spectrum due to an incident electron with energy E* has the form of a beta distribution,

FIGURE 4-1 ENERGY TIMES ELECTRON STOPPING POWER FOR WATER VERSUS ENERGY

FIGURE 4-2 PERCENT ERROR IN ELECTRON RANGE FUNCTION FOR ALUMINUM

$$C_{o} E^{\beta} (E_{u} - E)^{\alpha}$$
.

The upper energy limit, Eu, of the transmitted spectrum is defined by:

$$E_{U} = (2R^{-1}[R(E^*) - X] + E^*)/3;$$
 (4-28)

where

R⁻¹ (y) is the inverse range function.

The parameters α and β are determined by two conditions: the maximum value of the distribution occurs at the energy E_p , and the half-maximum value occurs at the energy E_p -W. These conditions lead to the relations:

$$\beta = -\ln(2) / \left[\ln\left(\frac{E_p - W}{E_p}\right) + \frac{E_u - E_p}{E_p} \cdot \ln\left(\frac{E_u - E_p + W}{E_u - E_p}\right) \right]$$
(4-29)

and

$$\alpha = \frac{\beta \left(E_{0} - E_{p} \right)}{E_{p}} . \tag{4-30}$$

E_p is obtained from the empirical formula,

$$E_p = (1 - g)^g \cdot (.99 + \frac{g}{10}) \cdot E_u;$$
 (4-31)

and W is obtained from the empirical formula,

$$W = g^{h} \cdot E_{p}; \qquad (4-32)$$

where

h = Min (1.85, 1.3 + 5.5g), and
$$g = X/R(E^*)$$
.

Because the transmitted spectrum, $C_0 E^{\beta} (E_0 - E)^{\alpha}$, pertains to unit transmitted electron flux; then,

$$C_{\circ} \int_{0}^{E_{\circ}} E^{3} (E_{\circ} - E)^{\alpha} dE = 1,$$
 (4-33)

from which C may be determined.

Substituting Equation 4-26 and the value of C_o into Equation 4-24, the expression for the electron dose becomes:

$$D = K \sum_{i} \Omega_{i} \int_{0}^{\infty} \Phi(E^{*}) \cdot T(E^{*}, X) \cdot \left[\frac{A \cdot (\beta + 1)E_{0}}{\alpha + \beta + 2} + B + \frac{C \cdot (\alpha + \beta + 1)}{\beta \cdot E_{0}} \right] \cdot dE^{*}.$$

$$(4-34)$$

Note that α , β , and $E_{_{_{\scriptsize U}}}$ are functions of E* and X. The Dose program evaluates Equation 4-34 for each detector.

The electron number transmission, $T(E^*, X)$, is compared with the Monte Carlo data of Berger and Seltzer. The comparison with sapphire $(Al_2O_3)^{11}$ is shown in Table 4-3; the comparison with aluminum is shown in Table 4-4. The maximum difference is less than 10 percent. Thick shield data and data for materials other than aluminum and sapphire are not available for comparison. The calculated electron transmission spectrum, $C_0E^{B}(E_0-E)^{\alpha}$, is compared with the Monte Carlo results of Berger and Seltzer for aluminum and sapphire in Figures 4-3 through 4-8. Whereas Figures 4-3 through 4-8 exhibit the transmission of monoenergetic electron beams, Figure 4-9 illustrates the calculated transmission of a continuous electron spectrum through several thicknesses of aluminum.

Table 4-3 electron number transmission – sapphire¹¹

Energy		0.1 gm/cm ²			$0.2\mathrm{gm/cm}^2$	Ċ		$0.3\mathrm{gm/cm}^2$	
MeV	LETS*	WC**	DIFF	LETS	MC	DIFF	LETS	WC	DIFF
•	166	026.	.021	.852	922.	920.	.433	.431	.002
2.		866.	.002	. 994	786.	200.	026.	. 949	.021
2.954	-	666	.00	666.	866.	.00	566.	.992	.003
4			000.	-	666.	.000	666	866.	.000
5.907	_•	•	000.	<u>.</u>	666.	.000	-	666.	.000
8.	١.	1.	.000	1.	1.	000.	•	1.	000.

*Present calculation

**Monte Carlo calculation of Berger and Seltzer

TABLE 4-4 ELECTRON NUMBER TRANSMISSION - ALUMINUM ONE MeV¹²

Thickness gm/cm	LETS	WC	DIFF
.055	5266	2286	8600°
011.	.9704	.9276	.0428
.165	.8790	.8134	.0656
.220	1969.	.6635	.0326

Figure 4–3. Comparison of electron energy spectra through sapphire (Al $_2$ O $_3$) - 1 MeV

FIGURE 4-4 COMPARISON OF ELECTRON ENERGY SPECTRA THROUGH SAPPHIRE $(\mathrm{Al}_2\mathrm{O}_3)-2~\mathrm{MeV}$

Electron Current - electrons cm ^2 MeV

FIGURE 4–5 COMPARISON OF ELECTRON ENERGY SPECTRA THROUGH SAPPHIRE (Al $_2{
m O}_3$) - 4 MeV

I-VeM Current - electrons cm Current

Figure 4-6 comparison of electron energy spectra through sapphire ($^{2}O_{3}$) $^{-}$ 8 MeV

FIGURE 4-7 COMPARISON OF ELECTRON ENERGY SPECTRA THROJGH ALUMINUM - 1 MeV

FIGURE 4-8 COMPARISON OF ELECTRON ENERGY SPECTRA THROUGH ALUMINUM - 1 MeV

FIGURE 4-9 ELECTRON SPECTRA THROUGH ALUMINUM SHIELD

4.3 SPECIAL FEATURES

The Dose code treats an unrestricted number of detectors. The only limitation is imposed by the number of detector positions prepared by the Geometry code which also treats an unrestricted number of detectors. The Dose code may be instructed to ignore some of the detectors on the geometry tape and to rewind the geometry tape in order to process the detectors again, possibly with a different input spectrum.

The detector dose calculations are performed vector by vector; therefore, the dose may be tallied into solid angle regions specified by the user. The solid angle regions may be discrete, nested, or partially overlapped. This feature permits the user to check the relative importance of shield sections and determine the effect of streaming.

The Dose code is designed to facilitate parametric studies. Material densities may be changed, even zeroed, with the "FF" values. This procedure effectively changes material penetration thicknesses. The range parameters associated with material numbers may be altered. These two features permit changes in shield materials and thicknesses without preparing a new geometry tape. In this context, the term "shield" refers to any set of volume elements in the configuration. These features, in conjunction with the capability of changing the input spectrum and rewinding the geometry tape, permit extensive parametric investigations with one access to the computer.

4.4 DOSE PROGRAM DATA INPUT PREPARATION

In the following, the column headed "FORMAT" gives the DIP format control under which this data is to be read, the column headed "NAME" gives the name of the data array, the column headed "DIMENSION" indicates the number of words available in fast storage for the named array, and the column headed "DEFINITION" is an attempt to describe the named data array.

The NAME card for the following data set must be:

N31, PHI, E, MAT, SA, SB, R1, HEAD, NPHI, NM, N2, ND, BIN, FDC, UNITS, FF, AT, EE, NE, FI, CA, CB, Z, AW, CC, NDM, AA, AB, AR1, EA, PHA, NPHA.

(See the description of the DIP program - Appendix A.1, Volume II)

FORMAT	NAME	DIMENSION	DEFINITION
3	PHI	(100)	Free field proton flux (P/cm ² -MeV-ster.)
3	Ε	(100)	Energies (MeV) associated with the tabulated
			proton flux (PHI).

NOTE: PHI and E must be tabulated in order of increasing energy.

4	MAT	(100)	Material numbers (an identification number);
			these numbers MUST match the material num-
			bers (MVX) in the Geometry program. This
			list should contain a material number only
			once for each shield material number regard-
			less of the number of times the material num-
			ber appears in the geometric configuration.
			The list should also include the material num-
			ber of each detector; however, if more than
			one detector is of the same material, the num-
			ber need only be entered once. Detector ma-
			terial numbers MUST be last in the list.
3	SA	(100)	Parameters associated with the proton range
3	SB	(100)	equation: $R(E) = \frac{a}{2L} \ln (1 + 2b E^r)$, $SA = a$,

FORMAT	NAME	DIMENSION	DEFINITION
3	R1	(100)	(Continued) SB = b, and R1 = r. Table A5, Appendix A, Volume 1.
			The number of each of the parameters must equal the number of MAT's and must be ordered to correspond to the materials in the MAT list. All the R1's must be equal, except those that pertain to detector materials.
5	HEAD	(20)	Any set of alphanumeric and special character information to identify the particular case at hand.
4	NPHI	(1)	The number of entries in the PHI-table (proton flux).
4	NM	(1)	The number of entries in the MAT-table.
4	N2	(1)	The logical number of the tape unit upon which the geometry tape is to be mounted.
4	ND	(1)	The number of detectors associated with this particular geometry tape. (If ND is zero, the program ends immediately with a memory dump; if ND is negative, the program ends with no dump. One of these methods should be used to cease the calculations.)

FORMAT	NAME	DIMENSION	DEFINITION
5	BIN	(1)	Hollerith information indicating the storage location of the geometry tape.
3	FDC	(1)	Energy deposition-to-dose conversion factor.
5	UNITS	(3)	Hollerith information consistent with FDC. (Usually RAD/HR or RAD).
3	FF	(100)	A factor, associated with each material, for adjusting the density (or thickness-gm/cm ²) of the material. The FF's must be in the same "order" as the MAT's. A value of unity preserves the penetration thicknesses computed by the Geometry program.
3	AT	(100)	A factor for adjusting buildup; this value should approximate the atomic mass number of the volume element with which it is associated. AT should equal zero if buildup is not needed. The AT's must be in the same "order" as the MAT's. (See Equation 5-2)
3	EE	(100)	Energies (MeV) associated with the tabulated electron flux (FI).
4	NE	(1)	The number of entries in the FI-table.
3	FI	(100)	Free field electron flux (e/cm ² -MeV-ster.).

FORMAT	NAME	DIMENSION	DEFINITION
3	CA	(10)	Coefficients associated with the electron
3	СВ	(10)	stopping power equation: $S(E) = A \cdot E + B$
3	CC	(10)	+ C/E . $CA = A$, $CB = B$, and $CC = C$.
			(See Equation 4-26, Section 4.2). These
			coefficients apply to the detector material.
3	Z	(100)	The "Z numbers" of the materials in the ma-
			terials list (MAT). These numbers MUST be
			in the same order as the materials in the list
			(MAT).
3	AW	(100)	The "atomic weight" of the materials in the
			materials list (MAT). These numbers MUST
			be in the same order as the materials in the
			list (MAT).
4	NDM	(1)	The number of detector materials.
3	AA	(100)	Parameters associated with the alpha range
3	AB	(100)	equation: $R(E) = \frac{a}{2b} \ln(1 + 2bE^r)$; $AA = a$;
3	AR1	(100)	AB = b; and $AR1 = r$. Table A6, Appendix
			A, Volume I.
			The number of each of the parameters must
			be equal to the number of MAT's and must be
			ordered to correspond to the materials in the
			MAT list. All the AR1's must be equal, ex-
			cept those that pertain to detector materials.

FORMAT	NAME	DIMENSION	DEFINITION
3	EA	(100)	Energies (MeV) associated with the tabulated alpha flux (PHA).
3	PHA	(100)	Free field alpha flux $(A/cm^2-MeV-ster.)$.
4	NPHA	(1)	The number of entries in the PHA-table.

Control must be returned to the program after the above data are read.

The following data are input in a do-loop over the number of detectors, ND. The NAME card associated with this data set is:

N4, NAR, POLA, AZIM, NSKIP

FORMAT	NAME	DIMENSION	DEFINITION
4	NAR	(1)	Number of angular regions. This indicates the number of partial solid angle regions into which the dose is to be tallied for the detector of current interest. If the sum of the mutually exclusive partial solid angular regions is less than 4π , the dose in the remaining solid angle is also tallied. The total dose at the detector is calculated whether NAR is zero or not. NAR must not be greater than 150.
3	POLA	(300)	The polar angle limits of the angular region - two polar angles per region.

FORMAT	NAME	DIMENSION	DEFINITION
3	AZIM	(300)	The azimuthal angle limits of the angular
			region – two azimuthal angles per region.

NOTE: All angles are in degrees and are positive; the lower limit must be the first of the pair. The polar angles must lie between 0° (positive z-axis of configuration) and 180° (negative z-axis of configuration) inclusive. The polar angle lower limit must be less than the upper limit. The azimuthal angles are measured counter clock-wise from the configuration positive x-axis. The azimuthal angles must lie between 0° and 360° inclusive. The azimuthal angle lower limit need not be less than the upper limit. For example, the data card to define two angular regions - (1), the first octant, and (2), a special region defined by the polar angles 20° to 160°, and the azimuthal angles - 45° to 45°, will have the following format:

4NAR, 2, \$3POLA, 0, 90, 20, 160, AZIM, 0, 90, 315, 45

FORMAT	NAME	DIMENSION	DEFINITION	
4	NSKIP	(1)	If this value is greater than zero, the current detector is processed; if this value is less than or equal to zero the current detector is skipped.	

Control must be returned to the program for each detector. After ND detectors are processed and/or skipped, control returns to the first calling sequence which expects a new NAME card and case data.

See sample input data listing in Appendix H.

4.5 DOSE PROGRAM OUTPUT

A sample Dose program output is presented in Appendix H. On the first page of output, much of the input data is listed. First is a list of the shield materials, by material number (MAT), and their associated parameters: SA, SB, R1, AA, AB, AR1, FF, AT, Z, and AW (See Section 4.4 for explanations of all input parameters). Next, a list of detector materials, by material number (MAT), and their associated parameters, SA, SB, R1, AA, AB, AR1, CA, CB, and CC are presented. Following the detector materials list is the geometry tape storage location (BIN) and the energy deposition-to-flux conversion factor (FDC). The units of FDC in this example are radgm/MeV-ster because the units of flux are particles/MeV-cm²-mission for all spectra. Next, the alpha, proton, and electron spectra are displayed. For each spectrum, the energy and particle flux, differential in energy, is listed: alpha (EA(I) and PHA(I)), proton (E(I) and PHI(I)), and electron (EE(I) and FI(I)). Associated with the alpha and proton spectra are the respective power law parameters H, and Q; for the expression H, E^Qi.

The results of the dose calculations are printed on a separate page for each detector considered. The heading information from the input data HEAD is printed at the top of the page. Below the heading is detector data from the geometry tape; this includes DHED (information input to the Geometry program), the detector coordinates (XD, YD, and ZD), and the detector material number. Next, the detector identification number and dose units are displayed. The remainder of the page contains the total proton dose, the total alpha dose, the total electron dose, and the total bremsstrahlung dose (at present, there is no bremsstrahlung calculation); also the doses, and their associated "weight fractions", are exhibited for each angular region and the region (REMAINDER) not contained in any angular region. A "weight fraction" is defined by:

weight fraction =
$$\frac{\Delta D/D}{\Delta \Omega/4\pi}$$

where

 ΔD = the partial dose for the radiation type in the angular region,

D = total dose for the radiation type, and

 $\Delta\Omega$ = solid angle subtended by the angular region.

APPENDIX A

Compilation Of PCA Events During The Nineteenth Solar Activity Cycle

TABLE AT COMPILATION OF SOLAR FLUX EVENTS^{8, 28}
1954 - 1963

Date Of Event	Protons/cm ² > 30 MeV	Duration Of PCA (Days)
1/17/55		2
2/23/56	1 + 9*	3
3/11 56		4
4/27/56		2
8/31/56	2.5 + 7	2 1/2
11/13/56	1 + 8	2
1/20/57	2 + 8	2 1/2
2/21/57		
4/3/57	5 + 7	2 1/2
4/6/57		
4/11/57		
5/19/57		1/2
6/19/57		
6/21/57	1.5 + 8	3
7/3/57	2 + 7	2
7/24/57	7.5 + 6	1/2
8/9/57	1.5 + 6	1
8/29/57		1/2
8/29/57	1.5 + 8	2
8/31/57	8 + 7	2

Date Of Event	Protons/cm ² > 30 MeV	Duration Of PCA (Days)
9/2/57	5 + 7	1 1/2
9/12/57	6 + 6	1 1/2
9/21/57	1.15 + 8	2
9/26/57		1
10/20/57	5 + 7	1
11/4/57	9 + 6	
12/17/57		
2/9/58	1 + 7	1
3/14/58		
3/23/58	2.5 + 8	1 1/2
3/25/58	6 + 8	4 1/2
3/30/58		
4/10/58	5 + 7	2
6/6/58		
7/7/58	2.5 + 8	4
7/29/58	8.5 + 6	1
8/16/58	4 + 7	2 1/2
8/22/58	7 + 7	3 1/2
8/26/58	1.1 + 8	3
9/22/58	8.5 + 7	3 1/2

^{*}The Sign And Digit Following Each Number Represent The Power Of Ten Multiplying That Number.

TABLE A1 COMPILATION OF SOLAR FLUX EVENTS^{8, 28} 1954 - 1963 (Continued)

Date Of Event	Protons/cm ² > 30 MeV	Duration Of PCA (Days)
1/26/59		
2/12/59		
5/10/59	9.6 + 8	7
6/13/59	8.5 + 7	> 2
7/10/59	1 + 9	4
7/14/59	1.3 + 9	3
7/17/59	9.1 + 8	7
8/18/59	1.8 + 6	
9/2/59	1.15 + 7	2
10/6/59		
1/11/60	6 + 6	4
3/29/60	6 + 6	1
3/30/60	6 + 6	1
4/1/60	5 + 6	2
4/5/60	1.1 + 6	4
4/28/60	2.5 + 7	1
4/29/60	1.75 + 8	5
5/4/60	6 + 6	2
5/6/60	4 + 6	2
5/13/60	5 + 7	2

Date Of Event	Protons/cm ² > 30 MeV	Duration Of PCA (Days)
9/3/60	3.5 + 7	14
11/12/60	1.3 + 9	2
11/15/60	7.2 + 8	4
11/20/60	4.5 + 7	15
7/11/61	3 + 6	
7/12/61	4 + 7	1
7/13/61		2 1/2
7/15/61	1.25 + 7	3
7/18/61	3 + 8	2 1/2
7/20/61	5 + 6	
7/28/61	4.4 + 6	
9/8/61	3 + 6	
9/10/61	3.75 + 7	
9/28/61	6 + 6	
11/10/61		
2/4/62		1
10/23/62	1.2 + 5	
4/15/63		
9/21/63		
9/26/63		

APPENDIX B

Compilation Of Small Solar Flux Events During 1960, Unaccompanied By PCA

TABLE BI COMPILATION OF SMALL SOLAR FLUX EVENTS²¹ DURING 1960, UNACCOMPANIED BY PCA

Date Of Event
1/15/60
2/7/60
2/15/60
2/29/60
3/10/60
3/17/60
4/15/60
5/9/60
5/17/60
5/26/60
6/1/60
6/15/60
6/25/60

Date Of Event
6/27/60
6/28/60
8/11/60
8/26/60
9/25/60
10/3/60
10/29/60
11/10/60
11/11/60
11/14/60
11/19/60
12/5/60

APPENDIX C

Julian Day Number, 1950 - 2000 A.D.

TABLE C1

JULIAN DAY NUMBER

DAYS ELAPSED AT GREENWICH NOON, A. D. 1950-2000

								,		-000		
Year	Jan. 0	Feb. 0	Mar. 0	Apr. 0	May 0	June 0	July 0	Aug. 0	Sept. 0	Oct. 0	Nov. 0	Dec. 0
1950	243 3282	3313	3341	3372	3402	3433	3463	3494	3525	3555	3586	3616
1951	3647	3678	3706	3737	3767	3798	3828	3859	3890	3920	3951	3981
1952	4012	4043	4072	4103	3767 4133	4164	4194	4225	4256	4286		4347
1953	4378	4409	4437	4468	4498	4529	4559				4317	4347
1954	4743	4774	4802	4833	4863	4894	4924	4590 4955	4621 4986	4651 5016	4682 5047	4712 5077
1955	243 5108	5139	5167	5198	5228	5259	5289	1			1	
1956	5473	5504	5533	5564	5594			5320	5351	5381	5412	5442
1957	5839	5870	5898	5929	5959	5625	5655	5686	5717	5747	5778	5808
1958	6204	6235	6263			5990	6020	6051	6082	6112	6143	6173
1959	6569	6600	6628	6294 6659	6324 6689	6355 6720	6385 6750	6416	6447 6812	6477 6842	6508	6538 6903
1960	243 6934	6965	6994	1	•	ŀ	ı	ļ.				
				7025	7055	7086	7116	7147	7178	7208	7239	7269
1961	7300	7331	7359	7390	7420	7451	7481	7512	7543	7573	7604	7634
1962	7665	7696	7724	7755	7785	7816	7846	7877	7908	7938	7969	7999
1963	8030	8061	8089	8120	8150	8181	8211	8242	8273	8303	8334	8364
1964	8395	8426	8455	8486	8516	8547	8577	8608	8689	8669	8700	8780
1965	243 8761	8792	8820	8851	8881	8912	8942	8973	9004	9034	9065	9095
1966	9126	9157	9185	9216	9246	9277	9307	9338	9369	9399	9430	9460
1967	9491	9522	9550	9581	9611	9642	9672	9703	9734	9764	9795	9825
1968	9856	9887	9916	9947	9977	* 0008	*0038	*0069	*0100	*0130	*0161	*0191
1969	244 0222	0253	0281	0312	0342	0373	0403	0434	0465	0495	0526	0556
1970 1971	244 0587	0618	0646	0677	0707	0738	0768	0799	0830	0860	0891	0921
1971	0952	0983	1011	1042	1072	1103	1133	1164	1195	1225	1256	1286
1972	1317	1348	1377	1408	1438	1469	1499	1530	1561	1591	1622	1652
1973	1683	1714	1742	1773	1803	1834	1864	1895	1926	1956	1987	2017
1974	2048	2079	2107	2138	2168	2199	2229	2260	2291	2321	2352	2382
1975	244 2413	2444	2472	2503	2533	2564	2594	2625	2656	2686	2717	2747
1976	2778	2809	2838	2869	2899	2930	2960	2991	3022	3052	3083	3113
1977	3144	3175	3203	3234	3264	3295	3325	3356	3387	3417	3448	3478
1978	3509	3540	3568	3599	3629	3660	3690	3721	3752	3782	3813	3843
1979	3874	3905	3933	3964	3994	4025	4055	4086	4117	4147	4178	4208
1980	244 4239	4270	4299	4330	4360	4391	4421	4452	4483	4513	4544	4574
1981	4605	4636	4664	4695	4725	4756	4786	4817	4848	4878	4909	4939
1982	4970	5001	5029	5060	5090	5121	5151	5182	5213	5243	5274	5304
1983	5335	5366	5394	5425	5455	5486	5516	5547	5578	5608	5639	5669
1984	5700	5731	5760	5791	5821	5852	5882	5913	5944	5974	6005	6035
1985	244 6066	6097	6125	6156	6186	6217	6247	6278	6309	6339	6370	6400
1986	6431	6462	6490	6521	6551	6582	6612	6643	6674	6704	6735	6765
1987	6796	£827	6855	6886	6916	6947	6977	7008	7039	7069	7100	7130
1988	7161	7192	7221	7252	7282	7313	7343	7374	7405	7435	7466	7496
1989	7527	7558	7586	7617	7647	7678	7708	7739	7770	7800	7831	7861
1990	244 7892	7923	7951	7982	8012	8043	8073	8104	8135	8165	8196	8226
1991	8257	8288	8316	8347	8377	8408	8438	8469	8500	8530	8561	8591
1992	8622	8653	8682	8713	8743	8774 ·	8804	8835	8866	8896	8927	8957
1993	8988	9019	9047	9078	9108	9139	9169	9200			9292	9322
1994	9353	9384	9412	9443	9473	9504	9534	9565	9231 9596	9261 9626	9657	9687
1995	244 9718	9749	9777	9808	9838	9869	9899	į.	Į.	9991	+0022	*0052
1996	245 0083	0114	0143	0174	0204			9930	9961			
1997	0449	0480	0508	0539		0235	0265	0296	0327	0357	0388	0418
1998	0814	0845	0873	0904	0569	0600	0630	0661	0692	0722	0753	0783
1999	1179	1210	1238	1269	0934 1299	0965 1330	0995 1860	1026 1391	1057 1422	1087 1452	1118 1483	1148 1513
2000	245 1544		1	ŀ				i		l	[Ī
2000	1 1044	10/0	1604	1635	1665	1696	1726	1757	1788	1818	1849	1879

APPENDIX D

The proton, alpha, and electron spectra for the missions described in Section 2.0 are tabulated in this appendix.

For the Mars and Lunar missions, the units are particles per square centimeter-MeV-mission. The heading above each spectrum indicates the probability, in percent, of encountering a flux larger than that shown, arising from solar flux events.

For the Earth orbit missions, the units are particles per square centimeter-MeV-day. The proton data are derived from the Vette integral flux orbital integrations ³⁷ of proton map AP3. The electron data are derived from the Vette integral flux orbital integrations of the projected 1968 electron environment.

TABLE DI MARS MISSION SPECTRA

October 9, 1977

		3	Proton			Alpha	ha	
E(MeV)	0.1%	%0.1	10.0%	%0°05	%1.0	%0°1	%0.01	%0.03
10	2.53 + 11*	8.28 + 10	3.10 + 9	1.72 + 8	5.02 + 11	5.01 + 10	2.89 + 9	1.26 + 8
30	2.18 + 10	5.49 + 9	6.44 + 8	2.12 + 7	2.49 + 10	4.98 + 9	3.89 + 8	1.43 + 7
90	6.46 + 9	1.34 + 9	1.77 + 8	6.45 + 6	4.77 + 9	1.12 + 9	7 + 89.6	3.54 + 6
100	1.23 + 9	2.09 + 8	2.21 + 7	8.64 + 5	3.83 + 8	1.13 + 8	1.12 + 7	4.49 + 5
200	2.07 + 8	2.97 + 7	1.99 + 6	7.54 + 4	2.74 + 7	8.46 + 6	7.64 + 5	3.06 + 4
400	3.74 + 7	3.18 + 6	1.10 + 5	4.32 + 3	1.84 + 6	4.56 + 5	4.13 + 4	1.31 + 3
1000	1.38 + 6	5.80 + 4	1.74 + 3	2.95 + 1	4.67 + 4	7.35 + 3	2.96 + 2	8.29 + 0
1 500	1.72 + 5	4.35 + 3	8.77 + 1 1.31 + 0	1.31 + 0	9.85 + 3	7.62 + 2	1.90 + 1	5.75 - 1

*The Sign And Digit(s) Following Each Number Represent The Power Of Ten Multiplying That Number.

TABLE D1 MARS MISSION SPECTRA (Continued) December 28, 1981

E(MoV)			Proton			₹	Alpha	
L(MeV)	0.1%	1.0%	%0.01	%0°05	0.1%	1.0%	10.0%	50.0%
10	1.78 + 11	7.46 + 10	9.44 + 9	1.10 + 9	4.26 + 11	7.19 + 10	6 + 00.6	5.67 + 8
30	1.79 + 10	5.24 + 9	1.34 + 9	8.45 + 7	1.95 + 10	6 + 50.9	8.93 + 8	5.84 + 7
50	6.15 + 9	1.44 + 9	3.63 + 8	2.05 + 7	3.62 + 9	1.41 + 9	2.21 + 8	1.40 + 7
100	1.48 + 9	2.59 + 8	4.38 + 7	2.97 + 6	3.28 + 8	1.38 + 8	2.31 + 7	1.50 + 6
200	3.12 + 8	3.92 + 7	4.35 + 6	3.55 + 5	2.61 + 7	1.03 + 7	1.84 + 6	1.12 + 5
400	5.68 + 7	7.71 + 6	2.46 + 5	1.88 + 4	1.95 + 6	6.21 + 5	8.11 + 4	4.47 + 3
1000	4.28 + 6	4.31 + 4	3.05 + 3	7.87 + 1	6.07 + 4	1.26 + 4	6.67 + 2	3.75 + 1
1500	6.08 + 5	3.66 + 3	2.53 + 2	4.39 + 0	1.27 + 4	2.18 + 3	5.49 + 1	2.45 + 0

TABLEDI MARS MISSION SPECTRA (Continued) April 16, 1986**

		<u>a.</u>	Proton			Alpha	םר	
E(MeV)	0.1%	1.0%	10.0%	50.0%	0.1%	1.0%	%0.01	50.0%
10	3.40 + 10	4.22 + 9	2.39 + 7	1.24 + 6	9.60 + 10	2.73 + 9	2.76 + 7	6.17 + 5
30	3.19 + 9	3.87 + 8	8.25 + 6	1.22 + 5	1.66 + 10	4.35 + 8	5.11 + 6	9.87 + 4
20	8 + 88.6	1.08 + 8	2.65 + 6	3.84 + 4	4.97 + 9	1.16 + 8	1.36 + 6	2.82 + 4
100	2.09 + 8	2.11 + 7	3.50 + 5	5.90 + 3	5.90 + 8	1.31 + 7	1.56 + 5	3.03 + 3
200	2.69 + 7	2.29 + 6	2.34 + 4	5.06 + 2	3.50 + 7	7.55 + 5	1.06 + 4	1.82 + 2
400	2.40 + 6	1.35 + 5	8.58 + 2	1.25 + 1	1.12 + 6	2.59 + 4	4.95 + 2	0 + 88.9
1000	2.61 + 4	7.23 + 2	6.56 + 0	3.63 - 2	9.38 + 3	1.75 + 2	3.70 + 0	4.43 - 2
1 500	1.55 + 3	4.02 + 1	2.89 - 1	2.88 - 3	5.54 + 2	1.71 + 1	1.71 + 1 1.85 - 1	4.28 - 3

**19.6 Percent Of Missions Encountered No Flux Events

TABLED2 LUNAR MISSION SPECTRA

June 1, 1969*

		ď	Proton			Alpha	ha	
c(MeV)	0.1%	1.0%	10.0%	%0°05	0.1%	1.0%	10.0%	20.0%
10	6.64 + 10	7.50 + 9	8.38 + 7	1.20 + 6	5.34 + 10	3.58 + 9	7.12 + 7	7.66 + 5
30	6.73 + 9	5.67 + 8	9.06 + 6	1.33 + 5	5.98 + 9	4.82 + 8	5.85 + 6	9.67 + 4
50	1.74 + 9	1.75 + 8	2.71 + 6	3.86 + 4	9.47 + 8	1.17 + 8	1.67 + 6	2.46 + 4
100	2.34 + 8	2.62 + 7	3.79 + 5	5.26 + 3	9.95 + 7	1.31 + 7	1.92 + 5	2.70 + 3
200	3.10 + 7	2.10 + 6	3.15 + 4	4.46 + 2	6.65 + 6	8.62 + 5	1.33 + 4	1.91 + 2
400	3.46 + 6	1.77 + 5	1.53 + 3	1.84 + 1	4.05 + 5	4.81 + 4	5.14 + 2	0 + 08.9
1000	5.57 + 4	1.10 + 3	9.75 + 0	1.08 - 1	7.10 + 3	3.05 + 2	3.18 + 0	5.38 - 2
1500	3.84 + 3	5.67 + 1	4.54 - 1	7.93 - 3	6.58 + 2	2.20 + 1	2.05 - 1	3.93 - 3

*14.56 Percent Of Missions Encountered No Flux Events

TABLE D2 LUNAR MISSION SPECTRA (Continued) January 1, 1970**

3		Pr	Proton			Alpha	p	
E(MeV)	%1.0	1.0%	10.0%	%0.03	0.1%	1.0%	10.0%	50.0%
10	2.51 + 10	5.23 + 8	4.74 + 6		2.68 + 10	8.58 + 8	3.02 + 6	
30	2.10 + 9	9.83 + 7	5.12 + 5		2.18 + 9	5.43 + 7	3.67 + 5	
50	4.88 + 8	2.56 + 7	1.44 + 5		4.56 + 8	1.59 + 7	9.38 + 4	
100	6.63 + 7	3.99 + 6	1.88 + 4		4.14 + 7	2.12 + 6	1.03 + 4	
200	5.97 + 6	2.85 + 5	1.73 + 3		2.69 + 6	1.23 + 5	7.01 + 2	
400	3.76 + 5	1.69 + 4	1 + 85.8		1.01 + 5	5.06 + 3	2.91 + 1	
1000	3.62 + 3	1.27 + 2	3.97 - 1		8.07 + 2	3.04 + 1	1.60-1	
1500	2.21 + 2	4.93 + 0	0 1.56 - 2		6.91 + 1	2.21 + 0 1.03 - 2	1.03 - 2	

**58.49 Percent Of Missions Encountered No Flux Events

TABLED2 LUNAR MISSION SPECTRA (Continued) June 1, 1971***

E(MeV)0.1%1.0%10.0%50.0%0.1%102.31 + 102.13 + 94.21 + 73.41 + 52.28 + 10304.85 + 93.97 + 83.79 + 65.82 + 45.25 + 9509.04 + 81.04 + 81.18 + 61.56 + 48.53 + 81009.57 + 71.43 + 71.29 + 52.02 + 37.13 + 72002.16 + 71.22 + 61.63 + 41.64 + 25.31 + 64002.79 + 65.77 + 46.53 + 23.59 + 03.09 + 510004.12 + 45.51 + 24.39 + 01.25 - 26.04 + 315002.80 + 33.14 + 11.86 - 18.21 - 46.08 + 2									
0.1% 1.0% 50.0% 2.31 + 10 2.13 + 9 4.21 + 7 3.41 + 5 4.85 + 9 3.97 + 8 3.79 + 6 5.82 + 4 9.04 + 8 1.04 + 8 1.18 + 6 1.56 + 4 9.57 + 7 1.43 + 7 1.29 + 5 2.02 + 3 2.16 + 7 1.22 + 6 1.63 + 4 1.64 + 2 2.79 + 6 5.77 + 4 6.53 + 2 3.59 + 0 4.12 + 4 5.51 + 2 4.39 + 0 1.25 - 2 2.80 + 3 3.14 + 1 1.86 - 1 8.21 - 4	E(Me)/)		:	hoton	!		Alpha	ha	
2.31 + 102.13 + 94.21 + 73.41 + 54.85 + 93.97 + 83.79 + 65.82 + 49.04 + 81.04 + 81.18 + 61.56 + 49.57 + 71.43 + 71.29 + 52.02 + 32.16 + 71.22 + 61.63 + 41.64 + 22.79 + 65.77 + 46.53 + 23.59 + 04.12 + 45.51 + 24.39 + 01.25 - 22.80 + 33.14 + 11.86 - 18.21 - 4	(\	0.1%	1.0%	10.0%	50.0%	0.1%	1.0%	10.0%	50.0%
4.85 + 93.97 + 83.79 + 65.82 + 49.04 + 81.04 + 81.18 + 61.56 + 49.57 + 71.43 + 71.29 + 52.02 + 32.16 + 71.22 + 61.63 + 41.64 + 22.79 + 65.77 + 46.53 + 23.59 + 04.12 + 45.51 + 24.39 + 01.25 - 22.80 + 33.14 + 11.86 - 18.21 - 4	10	2.31 + 10	2.13+	4.21 + 7	3.41 + 5	2.28 + 10	1.55 + 9	1.94 + 7	2.23 + 5
9.04 + 81.04 + 81.18 + 61.56 + 49.57 + 71.43 + 71.29 + 52.02 + 32.16 + 71.22 + 61.63 + 41.64 + 22.79 + 65.77 + 46.53 + 23.59 + 04.12 + 45.51 + 24.39 + 01.25 - 22.80 + 33.14 + 11.86 - 18.21 - 4	30	4.85 + 9		3.79 + 6	5.82 + 4	5.25 + 9	2.48 + 8	3.36 + 6	3.93 + 4
9.57 + 7 1.43 + 7 1.29 + 5 2.02 + 3 2.16 + 7 1.22 + 6 1.63 + 4 1.64 + 2 2.79 + 6 5.77 + 4 6.53 + 2 3.59 + 0 4.12 + 4 5.51 + 2 4.39 + 0 1.25 - 2 2.80 + 3 3.14 + 1 1.86 - 1 8.21 - 4	50	9.04 + 8		1.18 + 6	1.56 + 4	8.53 + 8	5.62 + 7	8.09 + 5	9.48 + 3
2.16 + 7 1.22 + 6 1.63 + 4 1.64 + 2 2.79 + 6 5.77 + 4 6.53 + 2 3.59 + 0 4.12 + 4 5.51 + 2 4.39 + 0 1.25 - 2 2.80 + 3 3.14 + 1 1.86 - 1 8.21 - 4	100	9.57 + 7		1.29 + 5	2.02 + 3	7.13 + 7	7.67 + 6	7.60 + 4	1.04 + 3
2.79 + 6 5.77 + 4 6.53 + 2 3.59 + 0 4.12 + 4 5.51 + 2 4.39 + 0 1.25 - 2 2.80 + 3 3.14 + 1 1.86 - 1 8.21 - 4	200	2.16 + 7	_	1.63 + 4	1.64 + 2	5.31 + 6	4.78 + 5	5.64 + 3	7.33 + 1
4.12 + 4 5.51 + 2 4.39 + 0 1.25 - 2 2.80 + 3 3.14 + 1 1.86 - 1 8.21 - 4	400	2.79 + 6	· ` !	6.53 + 2	3.59 + 0	3.09 + 5	2.38 + 4	2.41 + 2	2.88 + 0
2.80 + 3 3.14 + 1 1.86 - 1 8.21 - 4	1000	4.12 + 4	``	4.39 + 0	1.25 - 2	6.04 + 3	1.72 + 2	1.23 + 0	8.09 - 3
	1500	2.80 + 3	3.14 + 1	1.86 - 1	8.21 - 4	6.08 + 2	1.27 + 1	8.40 - 2	4.25 - 4

***25.69 Percent Of Missions Encountered No Flux Events

TABLE D3 EARTH ORBIT SPECTRA - PROTONS, AP3

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		150 Nautical	×		300 Nautical Miles	Miles		600 Nautica	Miles
c(MeV)	0	300	_o 06	00	300	906	00	30, 06	06
0		6.46 + 3	6.55 + 3	8.62 + 2	5.71 + 4	4.28 + 4	1.48 + 5	3.53 + 5	1.73 + 5
20		4.06 + 3	3.64 + 3	5.77 + 2	3.78 + 4	2.59 + 4	1.25 + 5	2.66 + 5	1.28 + 5
901		2.28 + 3	1.75 + 3	3.50 + 2	2.25 + 4	1.38 + 4	1.01 + 5	1.86 + 5	8.85 + 4
200		7.15 + 2	4.03 + 2	1.28 + 2	8.03+3	3.95 + 3	6.59 + 4	9.10 + 4	4.20 + 4
400		7.06 + 1	2.14 + 1	1.73 + 1	1.02 + 3	3.21 + 2	2.81 + 4	2.18 + 4	9.45 + 3
1000		6.77 - 2	3.20 - 3	4.23 - 2	2.08 + 0	1.73 - 1	2.18 + 3	3.02 + 2	

(1111)	1	000 Nautical M	al Miles	2	2000 Nautical Miles	Miles		3000 Ngurin	Miles
E(MeV)	၀	300	°06	0	306	06	00	30, 30, 60	06
10	1.03 + 6 1.97 +	1.97 + 6	8.05 + 5	4.48 + 6	3.72 + 6	1.64 + 6	1.28 + 7	1.28 + 7	5.61 + 6
20	8.86 + 5	1.47 + 6	6.04 + 5	3.11 + 6		1.05 + 6	3.30 + 6	3.09 + 6	1.36 + 6
9	2	1.01 + 6	4.21 + 5	1.96 + 6	1.34 + 6	5.99 + 5	6.07 + 5	5.22 + 5	2.31 + 5
200	4.98 + 5	5 4.79 + 5	2.05 + 5	7.86 + 5	4.31 + 5	1.95 + 5	2.05 + 4	1.49 + 4	6.70 + 3
400		5 1.08 + 5	4.87 + 4	1.26 + 5	4.45 + 4	2.07 + 4	2.33 + 1	1.21 + 1	5.61 + 0
1000	2.29 + 4	1.23 + 3	6.51 + 2	5.15 + 2	4.91 + 1	2.48 + 1	3.45 - 8	6.44 - 9	3.30 - 9

5 20 +
5.30 - 4 1.26 - 16
1.63 - 54

TABLED4 EARTH ORBIT SPECTRA -- ELECTRONIS, 1968

F(MeV)		150 Nautical Miles	l Miles	3	300 Nautical Miles	Miles		600 Nautical Miles	Miles
	00	30°	°06	00	300	06	00	300	06
0.5		1.99 + 8	6 + 89.9	1.65 + 6	1.65 + 6 1.32 + 10 1.76 + 10	1.76 + 10	1.71 + 11	1.71 + 11 3.62 + 11 1.88 + 11	1.88 + 11
1.0		4.77 + 6	1.47 + 9	8.99 + 4	3.16 + 8	2.71 + 9	7.40 + 9	9.27 + 9	1.57 + 10
2.0	i	2.89 + 4	1.39 + 8	6.25 + 2	1.92 + 6	2.48 + 8	7 + 50.7	5.40 + 7	1.14 + 9
4.0		1.89 + 4	1.72 + 6	4.75 + 1	1.26 + 6	3.65 + 6	1.25 + 7	3.43 + 7	2.81 + 7
0.0		1.09 + 4	7.47 + 4	3.07 + 0	7.63 + 5	5.36 + 5	4.72 + 6	2.00 + 7	8.48 + 6
8.0		6.43 + 3	2.15 + 4	1.74 - 1	4.54 + 5	2.62 + 5	9 + 88.	1.12 + 7	4.39 + 6
10.0		4.23 + 3	1.18 + 4	1.21 - 2	2.77 + 5 1.54 + 5	1.54 + 5	3.47 + 5	6.73 + 6	2.34 + 6

_		_							
Miles	°06		9.89 + 11 5.55 + 11 7.15 + 11	7.42 + 9 3.48 + 10 1.33 + 11	1.52 + 10	3.54 + 8	3.60 + 7	1.14 + 7	
3000 Nautical Miles	30°		5.55 + 11	3.48 + 10	5.79 + 9	3.45 + 8	6.89 + 7	2.44 + 7	2.35 + 7 1.03 + 7
	00		9.89 + 11	7.42 + 9	5.03 + 8	2.26 + 8	1.05 + 8	4.82 + 7	2.35 + 7
Miles	005		2.21 + 12	1.11 + 11	8.27 + 9	3.66 + 8	1.64 + 8	1.03 + 8	6.64 + 7
2000 Nautical Miles	300		1.06 + 13 4.36 + 12 2.21 + 12	1.18 + 11 4.86 + 10 1.11 + 11	1.37 + 9 8.28 + 8	5.29 + 8	3.30 + 8	2.13 + 8	1.54 + 8
20	00		1.06 + 13	1.18 + 11	1.37 + 9	1.20 + 9 5.29 + 8	8,16 + 8	5.27 + 8	3.53 + 8
al Miles	06		6.25 + 12 4.49 + 12 1.84 + 12	6.56 + 10	2.83 + 9	2.08 + 8	1.04 + 8	6.06 + 7	3.91 + 7
1000 Nautical Mil	30°		4.49 + 12	1.69 + 11 8.50 + 10 6.56 + 10	5.72 + 8	6.22 + 8 4.51 + 8	2.81 + 8	1.71 + 8	1.03 + 8 1.12 + 8
	00		6.25 + 12	1.69+11	9.27 +8	6.22 + 8	3.43+8	1.82 + 8	1.03 + 8
F(MeV)	())		0.5	1.0	2.0	4.0	6.0	8.0	10.0

TABLE D4 EARTH ORBIT SPECTRA - ELECTRONS, 1968 (Continued)

() () ()	200	5000 Nautical Miles	Miles	700	7000 Nautical Miles	Wiles	10,0	10, 000 Nautical Miles	Miles
E(MeV)	00	30°	06	00	30°	900	00	30°	90 ₀
0.5	2.11 + 12	2.56 + 12	2.11 + 12 2.56 + 12 1.58 + 12	4.08 + 12	4.08 + 12 4.32 + 12 2.16 + 12	2.16 + 12	5.54 + 12	5.54 + 12 4.57 + 12 1.97 + 12	1.97 + 12
1.0	1.23 + 11	.23 + 11 4.88 + 11	3.14 + 11	1.04 + 12	1.20 + 12 5.55 + 11	5.55 + 11	1.38 + 12	1.38 + 12 9.99 + 11 4.25 + 11	4.25 + 11
2.0	1.65 + 10	1.65 + 10 7.30 + 10	4.01 + 10	2.00 + 11	2.00 + 11 1.84 + 11 7.79 + 10	7.79 + 10	1.52 + 11	1.52 + 11 8.20 + 10 3.49 + 10	3.49 + 10
4.0	1.80 + 9	1.80 + 9 2.77 + 9	1.26 + 9	6 + 98.9	4.47 + 9	1.85 + 9	1.74 + 9	1.74 + 9 7.46 + 8	3.31 + 8
6.0	1.96 + 8	1.96 + 8 1.74 + 8	6.97 + 7	2.02 + 8	1.16 + 8	4.24 + 7	1.94 + 7	i.94 + 7 7.76 + 6	3.51 + 6
8.0	2.07 + 7 1.45 + 7	1.45 + 7	5.95 + 6	6.13 + 6	3.06 + 6	2.10 + 6	2.33 + 5	$2.33 + 5 \mid 9.01 + 4$	3.90 + 4
10.0	2.37 + 6	2.37 + 6 1.27 + 6	6.33 + 5	1.90 + 5 8.07 + 4 3.50 + 4	8.07 + 4	3.50 + 4	4.28 + 3	4.28 + 3 1.70 + 3 7.24 + 2	7.24 + 2

(, , , ,)	15, (15,000 Nautical Miles	l Miles
E(MeV)	00	30°	06
0.5	3.71 + 12	3.71 + 12 2.01 + 12	8.39 + 11
1.0	4.32 + 11 2.15 +	2.15 + 11	9.09 + 10
2.0	7.40 + 9	3.22 + 9	1.41 + 9
4.0	2.09 + 6	8.06 + 5	3.62 + 5
6.0	5.88 + 2	2.36 + 2	1.03 + 2
8.0	1.39 - 1	3.25 - 2	2.23 - 2
10.0	3.98 - 5	1.18 - 4	1.02 - 4

APPENDIX F

This appendix contains the results of a parametric study of space radiation hazards for the Mars, Lunar, and Earth orbital missions described in Section 2.0. The flux spectra upon which these results are based are tabulated in Appendix D. For specified risk levels and radiation exposure dose limits this appendix may be used to estimate shield requirements.

Table E1 contains a summary of design dosages ¹⁴ recommended by NASA and reviewed by the Working Group on Radiation Problems, Man In Space Committee, National Academy of Sciences Space Science Board. Figures E1 through E12 present eye and abdomen dose within aluminum and polyethylene vehicles for three Mars missions; Figures E13 through E24 present similar data for three Lunar missions. The percents associated with each curve represent the probability of exceeding the indicated doses. Figures E25 through E28 present eye and abdomen proton dose rate within an aluminum vehicle for orbital missions at several altitudes and angles of inclination. Figures E29 and E30 present eye electron dose rate, within an aluminum vehicle as a function of altitude and angle of inclination. The dashed portions of the latter figures indicate a region where dose rate is changing rapidly; further calculations are required to accurately define these values.

TABLE E1 PROTON RADIATION EXPOSURE DOSE LIMITS 14

Critical Organ	Maximum Permissible Integrated Dose rem	Proton RBE rem/rad	Average Yearly Dose rad	Maximum Permissible Single Acute Emergency Exposure rad
Skin Of Whole Body	1600	1.4 (Approximately)	250	a 500
Blood-forming	270	1.0	55	200
Feet, Ankles, And Hands	4000	1.4	550	b 700
Eyes	270	c 2	27	100

a Based on skin erythema level.

based on skin erythema level but these appendages are believed to be less radiosensitive.

^c Slightly higher RBE assumed since eyes are believed more radiosensitive.

FIGURE ET EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A MARS MISSION

FIGURE E2 ABDOMEN DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A MARS MISSION

FIGURE E3 EYE DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A MARS MISSION

FIGURE E4 ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A MARS MISSION

FIGURE E5 EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A MARS MISSION

FIGURE E6 ABDOMEN DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A MARS MISSION

FIGURE E7 EYE DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A MARS MISSION

FIGURE E8 ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A MARS MISSION

FIGURE E9 EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A MARS MISSION

FIGURE E10 ABDOMEN DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A MARS MISSION

FIGURE E11 EYE DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A MARS MISSION

FIGURE E12 ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A MARS MISSION

FIGURE E13 EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E14 ABDOMEN DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E15 EYE DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E16 ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E17 EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E18 ABDOMEN DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E19 EYE DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E20 ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E21 EYE DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E22 ABDOMEN DOSE VERSUS ALUMINUM SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E23 EYE DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E24 ABDOMEN DOSE VERSUS POLYETHYLENE SHIELD THICKNESS FOR A LUNAR MISSION

FIGURE E25 EYE DOSE RATE VERSUS ALUMINUM SHIELD THICKNESS FOR CIRCULAR ORBITS IN THE TRAPPED RADIATION BELTS - AP3

FIGURE E26 EYE DOSE RATE VERSUS ALUMINUM SHIELD THICKNESS FOR CIRCULAR ORBITS IN THE TRAPPED RADIATION BELTS - AP3

FIGURE E27 ABDOMEN DOSE RATE VERSUS ALUMINUM SHIELD THICKNESS FOR CIRCULAR ORBITS IN THE TRAPPED RADIATION BELTS - AP3

FIGURE E28 ABDOMEN DOSE RATE VERSUS ALUMINUM SHIELD THICKNESS FOR CIRCULAR ORBITS IN THE TRAPPED RADIATION BELTS - AP3

FIGURE E29 EYE DOSE RATE VERSUS ALTITUDE BEHIND ONE gm/cm² ALUMINUM SHIELD FOR CIRCULAR ORBITS IN THE TRAPPED RADIATION BELTS - 1968 ELECTRON ENVIRONMENT

FIGURE E30 EYE DOSE RATE VERSUS ALTITUDE BEHIND FOUR gm/cm²
ALUMINUM SHIELD FOR CIRCULAR ORBITS IN THE TRAPPED RADIATION BELTS - 1968 ELECTRON ENVIRONMENT

APPENDIX F

Charged Particle Reaction Cross Sections

FIGURE FI NEUTRON YIELD FROM MANGANESE - 55³⁰

FIGURE F2 NEUTRON YIELD FROM IRON - 56³⁰

FIGURE F3 NEUTRON YIELD FROM NICKEL - 5831

FIGURE F4 NEUTRON YIELD FROM NICKEL - 6231

FIGURE F5 NEUTRON YIELD FROM COPPER - 6331

FIGURE F6 NEUTRON YIELD CROSS SECTIONS FOR ALPHA BOMBARDMENT OF GOLD - 197³⁸

APPENDIX G

Flare Program Input And Output Listings

The input data in Table G1 is identical for the IBM 7094 and IBM System 360/50 Fortran IV versions of the Flare program except for the preceding \$DATA card and the final end-of-file card.

The first output listing, Table G2, results from an IBM 7094 run. The second output listing, Table G3, results from an IBM System 360/50 run. Differences in the output values reflect the difference in computer word lengths.

TABLE G1 FLARE PROGRAM INPUT DATA

11		12 2660-6	73 2050.0	v1 15.030v0	72 11.000^0	Y3 3.00609	ç	9.40009	SEC 0.50000	SIZE 1.OANOA	# G
20 ×	JLE 24434£6	J ^R E ie 2443e68	JAP 2443624	JLP 2443644	•		; ;				
7 [†] 1 351.e1555		3 5 5 B	3001	TH4 474.3438UØ	E1 3.299000	E2 0.557000	60				
9.0		PEHCENT OF MISSIONS ENCOUNTERED NO FILUX EVENTS	S ENCOUNT	ERED NO F	LUX EVENTS						
-		u.	-	œ	u	-	α	u	۰	a	u
545	C.5562	4.551E-03	050	6.9957	4.565E-J3	651.0	6.9953	4.579E-73	652.7	1.9949	4.593E-A3
663.0	6.554E	4.647E-63	6.54.0 6.00	5765	4.62vE-33	655.7	4966	4.633E-93	656.7	1.9944	4.646E-A3
30.00		4 • C C C C C C C C C C C C C C C C C C	6669	1000 C	4.6/2E-13	669	0966	4.685E-73	6666	0.0077	4.5976-13
9	0.5560	4.757E-33	666.6	*666*	4.769E-13	667.	1.0093	4.781E-A3	668.7	1.001	4.793E-A3
665.	1.002c	4.EF4E-(3	670.5	1.5738	4.816E-73	671.	1.0001	4.828E-A3	672.A	1.1.65	4.8475-13
627.5	1.01.00	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.47.0	1 -1 396	4.863E-13	, 679	1.0112	4.875E-m3	676.7	1.6216	4.887E-A3
661.C	1.6227	4.548E-03	662.0	1.5249	4.961E-13	683.	1.0272	4.9746-43	684.7	1.0295	4.987E-13
665.0	1.6319	5.041E-13	680.0	1.0344	5.014E-73		1.6370	5.4296-43	688.7	1.7396	5.0436-43
יי ני טיני טיני	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5-1-00 F-1-0	0.050	1.0450	5.0738-93	169	1.0478	5.0886-03	692.	1.5.7	5.1746-13
(-259	1.0005	5.150E-03	6.68	1.0691	5.2396-73	699.3	1.0724	5.2286-73	77.	1.0757	5.2486-63
741.3	1.0751	5,2696-(3	7.32.6	1.9825	5.29#E-43	76.34.0	1.0860	5.3126-73	764.7	1.0895	5.334E-43
2000	1696-1	5.3566-63	766.0	1.0967	5.382E-33	Ç (1.1004	5.4778-73	C.847	1.1541	5.4336-13
7.83.6	1.1241	5.E7EE-(3	714.6	1.1271	5.6965-03	୍ଟ୍ର ମୁକ୍ତ	1.1310	5.6396-73	716.0	1.1350	5.6726-03
717.0	1.1351	5.7.7E-13	718.5	1.1431	5.742E-J3	719.7	1.1472	5.7791-13	721.4	1,1513	5.817E-43
721.6	1.1566	E. BEGE-(3	722.4	1.1596	5.8976-53	723.7	1.1638	5.9396-13	724.9	1.1690	5.982E-13
0.027	1.1654	6.218E-03	734.0	1.1938	6.072E-13	727.0	1.1808	6-119:1-4	728.1	1.1851	6.168E-13
733.0	1,2065	6-434E-03	484	1.2113	6.492E-13	735.7	1.2157	6.552E-73	736.7	1.22-1	6.6136-03
7.7.5	1.2246	6.67cE-63	7.38.0	1.2299	6-741E-33	739.0	1.2335	6.817E-13	740.0	1.2384	6.876E-73
741-0	2.000	7.247E-C3	742.0	1.26469	7.18E-43	743.	1.2514	7.4935-03	744.0	1.2559	7.169E-43
749.6	1.2785	7-5796-03	750.0	1.2830	7.668E-13	751.0	1.2875	7.759E-13	752.0	1.292	7.851E-#3
763.0	1.2566	7.546E-03	754.0		8.6446-53	755.0	1,3056	8.1436-93	756.0	1,31,1	8.245E-^3
757.5	1.3146	B - 345E - 43	758.0	1.3192	8.456E-13	759.7	1.3237	8.56£E-A3	769.	1.3282	8.6768-43
765.5	1.3500	9.270E-03	766.0		9.396E-13	767.	1,3595	9.5256-13	768.	1.3646	9.6566-63
765.6	1.3654	9.751E-03	176.4		9.927E-03	771.	1.3773	1.007/6-12	772."	1.3817	1.7216-42
777-1	1.050.1	100, 15E-02	778.3	1.45955	1 - 1 5 5 E - 0 2	775.3	1.3949	1.0656-02	776.0	1.3993	1.08AE-42
7 £ 1 • C	1.4210	1.1616-02	782.0	1.4253	1.1785-02	783	1.4296	1.195E-72	784	95.54	1.2136-02
765.0	1.4361	1.2315-02	786.3	1.4424	1.2495-02	787.	1.4466	1.26 /E-12	7.88.	1.4578	1.286E-72
3696	1.465°	1.355E-U2	793.0	1.4592	1.3246-02	÷162	1.4634	1.34 16-42		1.4675	1.3645-02
757.0	1.4880	1 - 4 - 6 - 10 - 10 - 10 - 10 - 10 - 10 - 10	0.407	1.44758	1.4.4E-32	2007	1.4041	1.4256-02	796.	1.4839	1.4465-02
661.0	1.544	1.55cE-02	e 12. C	1.5381	1.5786-92	803.	1.5120	1.6425-72	804.3	1.516	1.625E-^2
80 E	1.5155	1.649E-C.2	A.60.2	1.5238	1.672E-92	867.0	1,5277	1.697E-12	868.	1.5315	1.7215-42
500	1.05.36.4	1.746E-02	े अ अ अ	1.5392	1.7716-92	811.6	1.5436	1.796E-72	812.7	1.5468	1.822E-12
2.5.1.4	0 40	1.0466-1.2		1.0040	1.8745-12	610.0	1.5584	1.97.7E-02	816.	1.5617	1.927E-12
6439	105759	2.064E-62	822		2.(92E-12	823.	1.587	2.121E-72	A24.		241436-42
6 2 E • C	1.554.	2.179E-52	952e		2.2-:8E-12	827.	1.64.1	2.2:7E-12	829.7	1.6044	2.267E-12
0 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 ·	1.c6.7e	23-325-2	630		2.3276-12	631.	1.6146	2.36.7F- 2	832.7	1.6180	2.388E-42
	717011	2 - 4 I SE - 1 2	· • • • • • • • • • • • • • • • • • • •	1.0440	22644.2	835.	1.6279	2-4505-12	836.	1,6311	2.512E-12

			.6502 .6624 .6654 .6654	2.7U4E-92 2.835E-02 2.969E-)2 3.1(4E-32	843.0 847.0 851.0	1.6654	2.736E-72 2.868E-72 3.992E-72	844.0 848.7 6.852.1	1 . 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
3 m r g 4 g u u . U G G G M m 4 g f 4 6 6 6 6 6 6 7 U G M m m m m m m			6654	2.969E-72 3.104E-32	851.9	1.6654	3,002E-02	852.1	1.6654 1.6654 1.6654 1.6654	3.72E-A2
7			6654	3.1(4E-)2	000	1.6654	3-138E-02	856.3	1.6654 1.6654 1.6654 1.6654	3-172E-A2
									1.6654	
E E E		-	.6654	3.241E-C2	859.1	*000*1	3.275E-12	867.7	1.6554	3,3196-"2
9.6 9.6			.6654	3.3796-02	863.0	1.6654	3.4136-72	864.0	1,6569	3.44 BE-A2
3.6		-	• 6654	3.5176-02	867.0	1.6654	3.552E-32	868.		3.586E-A2
		-	6159	3.656E-92	671.0	1.6493	3.697E-72	872.	1.6466	3.725E-^2
1) 1	3./59E-02 874.0		6294	3.794E-J2	873.0	1.6264	3.828E-02	6.00	1.6354	3.862E-72
4.6		٠ -	10168	4.C67E-32	883.0	1.6135	4.197E-12	884.	1.6171	4.134E-72
4.16		-	.6032	4.201E-02	687.0	1.5996	4.234E-42	888.	1.5960	4.267E-A2
4.25		_	5886	4.332E-42	961.0	1.5848	4.365E-12	892.0	1.5849	4.3976-42
4 . 4 6		-	.5730	4.461E-U2	895.0	1.5690	4.492E-A2	896.	1.5649	4.5246-72
. S.		-	.5565	4.586E-32	9000	1.5522	4.616E-72		1.5478	4.647E-A2
4.67			.5389	4.707E-02	C 00 00 00 00 00 00 00 00 00 00 00 00 00	1.5343	4.736E-12	* 6	1.5297	4.766E-12
	4.755E-UZ 500.C		59263	4.823E-92		001001	4.852E-72		0110.1	4.884E-52
		• -	1084	5-0415-02	01510	1.4748	5-9676-72	016.	1.4694	5. A92F-A2
5.11		. ~	4584	5.142E-02	616	1,4528	5.166E-12	927.1	1.4471	5.1896-02
5.61	-	-	.4356	5.236E-02	923.0	1.4298	5.258E-A2	924.0	1.4238	5.280E-A2
5.40		-	.4118	5.323E-12	927.0	1.4056	5.344E-92	928.1	1.3994	5.3646-42
€.3€		-	.3868	5.4936-32	931.0	1.3894	5.422E-42	932.4	1.3739	5.441E-42
4.		-	.3608	5.476E-02	935.1	1.3541	5.493E-A2	936.4	1.3473	5.51AE-A2
(V) (٠.	•3436	5.541E-52	6.656	1.3266	5.556E-72		1,3196	5.5716-02
0 4	0.565L-UZ 542.0	-	2000	5.6475-32	0.47	1.2682	5.65RF-02		1.26.1	5.669F-02
5.67		٠ -	2450	5.688E-02	951.9	1.2372	5.697E-72	952.	1.2293	
5.71		-	1.2132	5.720E-02	955.0	1.2050	5.727E-12	956.4	1.1968	5.733E-42
5.73		-	1801	5.7446-02	959.7	1.1716	5.749E-42	969.	1.1631	5.753E-^2
5.75		-	1458	5.7596-72	963.7	1.137	5.762E-72	964.)	1.1282	5.764E-A2
5.76	6.765E-02 Se6.t.		1103	5.766E-32	967.3	1.1012	5.763E-12	908.2	1.0507	5.760E-72
2.76	0./COELOZ 5/0.1	• -	1356	5-7556-02	0.579	1.0259	5.751E-^2	976	1.161	5.747E-A2
5.74		ن ۱	*965	5.7376-32	979	.9865	5.731E-12	6.080	1.9764	5.725E-12
5.71		_	•9562	5.7116-02	683.	0.9459	5.734E-12	984.0	1.9356	5.695E-12
5.6		-	.9148	5.678E-02	987.0	0.9043	5.669E-12	988.7	1,893€	5.659E-^2
9.0		_	9.8725	5.638E-02	991.0	8618	5.627E-12	992.0	.851	5.6165-72
() () () ()	6.64.40-62 994.3 6.64.40-62 994.3		0.6294	5.5392E-02	0000	0.7747	5.4246+16	1000	7637	5.5116-02
0 4	5.553E-02 340.0 F.45rE-62 1602.3		7417	5-481E-A2	1003.0	7337	5.466E-72	1774.	7.197	5,457E-72
6.4		_	6269.	5.418E-02	1007.0	2.6870	5.472E-72	1,08.1	0.6763	5.385E-A2
5.36	-	۰	.6549	5.351E-92	1011.5	0.6444	5.334E-A2	1012.7	1.6341	5.316E-A2
5.25	5.258E-U2 1414.0	Ç;	.6138	5.28 JE-02	1:15.7	n.6f 39	5.262E-12	1716.0	4.5942	5.244E-02
5.22	-	ت	.5755	5.237E-32	1619.	6.5666	5.188E-A2	1024.	7.5580	5.1695-42
	-	9 (97419	5.131E-72	1123.0	5455	5.1126-72		55573	5.01 AE - 02
30	0.007E-12 1920.0		7504	4.978F-C2	1031.0	0.4925	4.959E-72	1032	0684.	4.939E-A2
		•)	4809	4.9016-52	1035.)	.4864	4.882E-12	1^36.1	3.4866	4.864E-A2
43.6	-	(3)	.4851	4.826E-£2	1639.7	r.4913	4.84BE-12	1740.7	.4942	4.797E-A2
4.73	.772E-UZ 1542.0		0.505.7	4.754E-02	1043.7	4.57.68	4.736E-72	1744.1	A.5121	4.719E-A2
4.76	-	. >	.5244	4.6855-32	15,47.0	A.5313	4.668E-72	1048.7	7.5386	4.651E-72
4.63	2	9	.5544	4.629E-72	1991	1. 5629	4.674E-72	1.55.1	1.5717	4.5896-72
4.57	-	٠.	1065	4.500E-12	00000	2550	2010000			A-481E-82
9		۽ ڊ	7520.	4.5056-72	1659	0.404.0	4.443E-12	4901	E 69.6	4-43BF-02
4 . 4	.4 /Ut=02 1:02:0		7121	4.4595-32	1067.	0.7260	4.412F-02	1,68.7	0.7370	4.404E-02
	.469E-02 1070s.	•	759	4.3906-02	1771	A.7730	4.384E-12	1072.	1.781	4-3786-42
2 17	• -		8329	4.369E-72	1. 75.7	4.8138	4.366E-72	1076.7	* 8247	4.363E-^2
4.36	~	د	\$94R.	4.359E-12	1079.1	F.8572	4.3586-72	10801	9.8679	4.358E-A2
	_	•	.8993	4.367E-72	1183.7	9668.	4.362E-12	1084.7	1.9174	4.365E-A2

1788.7 7.9518 4.384E-A2	
A.9518	
1,68.7	
1087.) 0.9415 4.378E-02 1691.0 0.9822 4.466E-02	
0.9415	
1087.3	
4.373E-12 4.398E-12	
1056.C .C.9312 1056.0 .0.9721	18 3370556
1056.C	LAST R
0.520E 4.368E-02	LT EN FIRST EN LAST RA
6.520E	FI
1665.3 1085.0	INPLT FA
	3

TABLE G2 FLARE PROGRAM OUTPUT LISTING - IBM 7094 (Continued)

PAGTON FLUX FREQUENCY CISTRIBUTION
(PENCENT OF MISSIONS WHICH ENCOUNTER FLUKES GREATER THAN OR EQUAL TO PHICE) - P/CM**2-MISSION)

ENENGY-MEV

				ENERGY-MEV	ΈV				
-	16.00	36.63	54.00	1 34.05	201.00	*00*	1064.99	1560.00	ĭ
1.0E 02	166.46	150.62	100.00	160.30	101.00	100.001	60.50	61.50	- B
2.0E 62	100.00	100.00	1.0.00	130.00	10.00	100.00	97.30	46.00	2,01
4.JE GZ	116.00	100.00	10001	136.30	10.00	100.1	80.00	35.53	A.AF A2
6.0E 02	100.00	100.00	100.00	100.33	1.37.30	100.001	76.50	29.00	6.7F A2
Book uż	100.00	100.00	160.69	170.37	19.00	170.90	73.30	24.54	8.AE A2
1.0E G	176.00	100-00	166.00	100.00	100.00	100.00	70.07	22.00	1. AE A3
2.0E G3	100.00	100.00	110.01	150.05	100.00	110.00	61.00	15.5	2. NE N3
4.ce c.	100.00	100.30	100.00	100.00	15.00	100.30	45.50	10.00	4. AE A3
C.LE CE	100.00	100.00	200.00	150.00	170.00	99.9f	39.16	7.50	6.46 43
8.0E G	1.0.0	100.00	166.60	126.16	130.00	98.5	33.54	7.50	9.AE 43
1.CE 04	20.001	100.00	100.00	1000	10,01	98.00	39.50	6.30	1.AE A4
Z.OE LA	100.30	100.00	100.00	109.60	100.00	\$1.0	21.00	ر و • ب	2.NE N4
4.01.04	10.00	100.10	151.00	196.69	13%.70	86.00	15.10	¢.,4	4: BC*4
6.0E 04	30.001	100.00	100.00	100.00	100.00	81.59	11.50	3.30	6.05 04
8.0F C4	100.00	100.00	100.67	100.00	130.00	76.50	8.57	2.4	8. AE A4
3 - OF C	30.00	100.00	1001	100	00.66	72.95	8.53	<u>د</u> :	1.75 75
2.0t CE	30.32	100.00	70. 201	170.00	98.00	66.93	6.10	1.00	2.AE AS
4.0 E OH	1,0,0	10001	156.60	100.00	61.50	45.54	4.50	9.87	\$ B → B
6.0E CT	196.10	100.00	100.00	66*29	86.00	38.50	*.0	£8.5	C.AE AS
8.06 05	100.001	100.00	1001	35.66	82.50	35.00	3.92	JS * V	B.AE AS
1.06 06	143.60	100.00	100.00	C0.66	78.00	30.59	3.30	A. 55	1.05 76
2.0E CE	100.00	130.00	69*65	96.)3	26.65	21.5	1.50	7.97	2. AE A6
4.06 06	100.00	100.00	60.65	88.10	51,00	14.37	0.50	ć. c	4. NE A6
6.0E 0¢	101.60	₹3.65	67.50	91.56	41.50	12.59	0.59	٥. و	6.4E 46
6.0E 0¢	156.00	20.65	55.25	75.50	38.0€	10.01	٠.5	٠,٠	8.75.76
1.0E L7	100.00	37.65	69.43	77.50	32.60	8.5	۸.5۸	٠, ٢	1.AE A7
2.re 01	100.00	77.65	86.07	58.36	23.50	7.50	ç. C	00.0	2.NE AT
4.0E C7	5E.EB	30.00	77.52	42.00	14.50	£.53	6.0	ς	4.0E 07
6.te C7	67.50	96.dC	71.34	33•€	13.50	2.50	0.00	ن. ن.	6.AE A7
8.GE 17	73.65	86.50	69.5u	31.04		1.00	0.0	٥, ٢	8.7E A7
Bore ue	26.6¢	78.00	56.53	27.00	03.6	ا•۸	ر د د	ć.,	1.75 .8
2.3E UE	97.58	64.55	42.03	17.63	7.56	, c	6.0	ζ.	2.AE AB
A.ct Cd	35.56	47.63	29.(0	11.53	e. 5.	0.0	د. د	£.	4.0E PB
6.0E 0E	72.00	36.57	24.50	6.5)	2.50	٥.,	ر د د	٠,٠	6. PE .8
Bove de	22.42	33.50	18.03	e•3	÷6.5	ر • ن	0.0	6.0	9.7E PB
Jour CS	60.09	32.50	14.5)	6.5)	2.40	, ,	ن. ن	(; ·	1. AE A9
2.0E 15	30.00	17.62	9.53	00.4	C .		e .	,,,,	2.ºE NO
4.0E C.	30.15	16.50	0.0	2.57	r (•	4.AE A9
6.0E LS	26.tü	0 · ·		20.2	E ()	Ç (F 6	() ()	6. AE 19
	22.7								# 10 B
2000	30.11			000	9				10.0
4 ave 1.3	970	4	1.50	66	000	2.0			
6.6E 11	3	2.00	0.54	200	0.0	10.0	ن. د		, L
8.45 13	4.50	2.6	63.5 5	f	٠ <u>٠</u>	ر ٠٠		7.00	C 11 11 11 11 11 11 11 11 11 11 11 11 11
1.CE 11	4.60	1.6	53.3	•	٠.٠ د	٠.٠	6.0	,,,,	1.05 11
2.UE 11	2.50		Ç	<u>ئ</u> د.	ئ. • ب	ر ن و	, c	ć • ¢	2. AE 11
4.65 11	2.00	0.0	٠,	د.،	ر ا	۲,٠	٥.0	ć	4.^E 11
6.6t 11	35.3	,,,	£.,	ر • دون	£	0.00	ţ.,	¢ .	6.0E 11
8.0£ 11	d •6	۲.۹	65.5	ر. (2000	٥. ٢	, , ,	ć.	8.7E 11
1.0t 12	C+50	ă. 0	c.c.	CO*.3	0	<u>ئ</u> ئ	6.0	ر د	1.AF 12
2.0t 1c	1,00)·;	0.00	?	0.0	٠.	٠٠.0	0.00	2. AE 12
4.CE 1c	63.3	73.	: J	6.23	و د د	(,	,	6	4.0E 12
6.6E 12	3	3:	3 3 6 3	5.	9 9	۶ ; د د	2.4	٠,٠	6.FE 12
8.0t 1.	90	33.6		F.	.	٠ د	۲. د		8. NE 12

TABLE G2 FLARE PROGRAM OUTPUT LISTING - 18M 7094 (Continued)

ALPHA FLUX FREQUENCY DISTRIBUTION (PENCENT UF WISSIUNS WHICH ENCOUNTER FLUXES GREATER THAN OR EQUAL TO PHICE) - A/CM**2-WISSION)

1	20.00	3,000		ENERGY-MEV	4EV 203.30	ېږر • بېر	1390.16	1560.00	Há
							•		!
1.08 62	100.00	11.0.03	160.30	131.09	100.00	156 .70	88.57	53.54	1.7E A2
2.0E 02	100.00	15.5.5	156.0	150.05	197.69	100.30	35.50	37.54	2.7E ^2
4.6E G2	100.00	11.6.6	165°	156.951	U03*C01	100.001	67.50	28.5	4.0E A2
6.tf Cz	10300	60.07.	169.09	20.54	15. et 6	176.76	61.57	23.5	6. PE >2
8.0E u.ż	166.66	1:3:00	101.5	100.00	130.00	10.001	58.	19.10	9•3E ↑2
1 - OF C	97.99	00.071	30.00 10.00	्र. १५०) हा	0 0 0 0 0 T	10.00	59.54	17.7	1.05
Z - O - C - C - C - C - C - C - C - C - C	37.77		3	0 (c)	00.001	135.44	50.00	F .	2015
1 C C C C C C C C C C C C C C C C C C C	106.00	1001		50.00	00.00		46.00		D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	100.0	103.00		135.00		4		מים מים
8.0E C.	7:00	100.00	01.031	· •	DV - 35.1	93.47	20.54	6.9	G. 16.
1. ch c. 4	30000	50.00 10.00		3 () () () () () () () () () (10.00	40.00	10.01	ເ ທີ່ຄ ທີ່	1.0 F
3 .	, r	٠ ٠ ٠	000					7 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 4) · · · · · · · · · · · · · · · · · · ·							. e	1 0
	200		3	1		, e			# 1 L
٠ . د د د د د د د د د د د د د د د د د د د	23.27	ن د د د د د			60.0	000		,	# L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000							
1 4		200			77.65				
		2							
	3 6	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
, t	200	200		7	0 0	1967			F 4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			200	0.00		0000			1.0
	301	3 00	24.70	7.0	20.04	7.50			9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 10 10 V	166.001	10.00	. 4.0	60.17	26.60				
9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.000	0.00	00.50	20.49	23.50			. ?	0 C U C
, to 10 and 10 a) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		24.00		0	2.5			•
200		97.60			9				2.06.07
4.CF 0.7	200)	65.53	29.53	30.0		, ,		4 4
6.0E U.7	26.00	78.50	56.03	22.53	9	6.5	00.0	,	6.0E 0.7
8.0E C?	20.42	71.66	49.50	2. 53	00.0	5.0	0.29		8.7E ^7
1.0E GE	32.00	67.50	47.50	18.00	4.50		ç. •	,,,	1.6
2.GE 08	63.00	54.50	33,54	9.5	3.50	(E • E	ć.	6.00	-
4.LE LE	71.50	41.66	23.€€	2.03	2.56	ç c	600	٠,٠	
6.LE UE	30.50	32.00	16.50	5.57	1.20	ر د د	66.¢	90.0	6.4E A8
E-UE CE	67.64	27.56	11.30	5.f.J	1-00	6.0	در. د	0.00	
1.0E 69	37.25	24.56	10.01	4.0	1.00	ن د د	ç. •	ic.	1.75 49
2.ut ts	30.05	13.60	8•¢	3.54	00°0	ر. د د	£	ć .	2.CE P9
4.0E ES	7¢•€0		5.56	2030	č.	C F G	6	Ç.	4. A. A.
6.GE 05	74.4	و.دو	30.4 30.4	1.00		ر . د	د. د	ć. •	6. TE .9
8.CE CS	14.00	5.56	4	0.59	ر ن ن	ć.	<u>د</u> د		8.7E 79
1.CE 10	16.1	2.5	3.50	ດ : ຄື		1 . ·		(;	
Z.CE 14	3 ·	5 to 1	Z• 50	ر د	i de	ن و د د	٠. د د	C (2. E 1.
2 4 4 5	٠	1000	100						
									1 1 1 1 1 1 1
2 40 40			3 5						
20.0		200		7					11 11 11
4.05			9	3000					1 D D V
6.06 11	9.0	33.0	S-1						1 1 1 1 1
8.0E 11	0,3	3			Š.			,	1 1 1 1 1
1.6.	1 4 4	23.0				,			
2.CE 14	ت ا ا			Ç		5		ć	2,00
4.0E 12	3	9,00	, B.		ي		£.,		4. AE 12
6.vE 12	97.0	27.6	30°	60.0	٠.٠٥	ر د د	٥. ٢	6.0	6.75 12
8.0E 12	6.5	9,00	00.0		J	ر د د	£ .	(8.^€ 12

1400.0		2600.0	2050.0	15.00000	11.00000	3.00000	000	0.4000	0.50000		00
NH I S 200	JLE 2443426	JRE . 2443868	JAP 2443624	JLP 2443644	•						
TH1 351.619873	TH2 498J049805		1866	TH4 474.339844	E1 0.299000	E2 0.557000	000				
0*0	PERCENT	PERCENT OF NISSIONS ENCOUNTERED NO FLUX EVENTS	IS ENCOUNT	ERED NO 1	LUK EVENTS						
-	~	u	۰	œ	u	-		u	I -	œ	u
		4.552E-03	650.0	0.9957	4.567E-03	651.0	0.9952	4.581E-03		0.9949	4.594E-03
653:0	0.9946	41608E-03	654.0	0.9945	4.621E-03	655.0	0.9944	4.635E-03		0.9944	4-648E-03
		4.560E-03	0.844	0.994	4.6/3E-U3 4.723E-U3	0.699	0.9950	4.686E-U3		0.9933	4.698E-03
66510		4.759E-03	666.0	0.9994	4.770E-03	667.0	1.0003	4.782E-03	668.0	1.0014	4.794E-03
	1.0025	4.806E-03	670.0	1.0038	4.817E-03	671.0	1.0051	4-829E-03	672.0	1.0065	4.841E-03
	1.0147	4.900E-03	678.0	1.0166	4.912E-03	679.0	1.0186	4-924E-03	680.0	1.0206	4.937E-03
68110	1.0227	4.950E-03	682.0	1.0249	4.962E-03	683.0	1.0272	4.975E-03	684.0	.0295	4.988E-03
0.689	1.0422	5.059E-03	690.0	1.0450	5.0745-03	691.0	1.0478	5.0896-03	0.88.0	0300	5.0446-03
69310	1.0536	64121E-03	694.0	1.0566	5.1386-03	695.0	1.0596		696.0	0627	5.173E-03
69740	1.0659	5.191E-03	698.0	1.0691	5.210E-03	699.0	1.0724	5.2296-03	700.0	10805	5.249E-03
705.0		5.359E-03	106.0	1.0967	5.3836-03	707	1.1004	5.408E-03	708.0	1.1041	5.434E-03
109.0		54461E-03	710.0	_	5.488E-03	711.0	1.1154	5.517E-13	712.0	1.1192	5.546E-03
713.0	1.1231	5.576E-03	714.0	1.1271	5.608E-03	715.0	1.1310	5.640E-33	716.0	1.1350	5.674E-03
721.0		5.858E-03	722.0	_	5.898E-03	723.0	1.1638	5.940E-03		1.1680	5.983E-03
725.0		6.028E-03	726.0	1.1765	6.074E-03	727.0	1.1808	6.121E-03		1.1851	6.169E-03
729.0	1.1894	6:220E-03	730.0	1.1938	6.271E-03	731.0	1.1981	6.324E-03	732-0	1.2025	6.3796-03
737.0		6.678E-03	738.0	-	6.742E-03	139.0	1.2335	6.809E-03	740.0	1.2380	
74110		61948E-03	742.0		7.020E-03	743.0	1.2514	7.094E-03		1.2559	7.1706-03
745:0	1.2604	7.248E-03	746.0	1.2649	7.329E-03	757.0	1.2694	7.411E-03	748.0	1.2740	7.495E-03
753.0	1.2966	7.948E-03	754.0	1.3011	8.046E-03	755.0	1.3056	8-145E-03		1.3101	B-247E-03
75740		8:351E-03	758.0	1.3192	8.458E-03	159.0	1.3237	8.567E-03	-	1.3282	B.678E-03
76110	1.3327	8.792E-03	762.0	1.3372	3.908E-03	763.0	1.3417	9.027E03	764.0	1.3461	9.148E-03
769.0	-	9.793E-03	770.0	1.3729	9.930E-03	0.17	1.3773	1.007E-02	772.0	1,3817	1.021E-02
77310		1.036E-02	774-0	1.3905	1.050E-02	775.0	1.3949	1.065E02	176.0	1.3993	1.081E-02
0.777	1.4037	1.096E-02	778.0	1.4080	1.112E-02	779.0	1.4124	1.1285-02	780.0	1.4167	1.145E-02
785.0	1.4210	1,231E-02	786.0	1.4424	1.2496-02	787	1.4466	1.268E-02	788.0	1.4508	1.286E-02
789.0	1.4550	1.3056-02	790.0	1.4592	1.325E-02	791.0	1.4633	1.344E-02	792.0	1.4675	1.364E-02
793.0	1.4716	1.384E-02	794.0	1.4758	1.405E-02	795.0	1.4799	1.425E-02	196.0	1.4839	1.447E-02
01108	1.5041	1.556F-02	802.0	1.5081	1.5796-02	803.0	1.5120	1.511E-02	900	1.5160	1.534E-02
80510	1.5199	1.649E-02	806.0	1.5238	1.673E-02	807.0	1.5277	1-697E-02	808.0	1.5315	1.722E-02
809.0		1.746E-02	810.0	1.5392	1.771E-02	811.0	1.5430	1.797E-02	812.0	1.5468	1.822E-02
813.0		1.954E-02	918	1.5690	1.874E-02 1.982E-02	919.0	1.5727	1.901E-02 2.009E-02	816.0	1.5617	1.927E-02
		2.065E-02	822.0	1.5835	2.093E-02	823.0	1.5870	2.1216-02		1.5905	2.150E-02
825.0	1.5940	2.179E-02	826.0	1.5975	2.208E-02	827.0	1.6010	2.2386-02		1.6044	2.267E-02
829.0	1.6078	2:297E-02	830.0	1.6112	2.327E-02	831.0	1.6146	2.3586-02	832.0	1.6180	2.388E-02

512E-02 640E-02 770E-02 2. 902E-02	3.1736-02 3.3116-02 3.4496-02 3.5876-02 3.7266-02	4.0006-02 4.1356-02 4.3986-02 4.5256-02 4.6486-02	5.0936-02 5.0936-02 5.1916-02 5.2826-02 5.3656-02 5.5116-02 5.5726-02 5.6256-02	5.707E-02 5.735E-02 5.755E-02 5.765E-02 5.768E-02 5.726E-02	6666- 6666- 6676- 5126- 5126- 4516- 3176- 2456- 0946-	941E-0 191E-0 191E-0 720E-0 533E-0 533E-0 440E-0 379E-0
1.6311 1.6439 1.6564 1.6654 1.6654		55950 55950 55950 5543 5543	1.4694 1.4694 1.4694 1.3494 1.3499 1.3196 1.2906	1.2293 1.1968 1.1631 1.0920 1.0547 1.0161 0.9764	0.8938 0.8510 0.7837 0.7837 0.6341 0.5942 0.5580	4444
836.0 846.0 844.0	856.0 866.0 864.0 872.0		912.0 926.0 926.0 936.0 936.0 946.0	952.0 956.0 956.0 956.0 976.0 986.0	988.0 992.0 996.0 1000.0 1008.0 1012.0 1016.0 1024.0	1032-0 1036-0 1046-0 1046-0 1052-0 1056-0 1066-0 1068-0 1072-0
2.481E-02 2.608E-02 2.737E-02 2.869E-02 3.003E-02	3.1396-02 3.2766-02 3.4146-02 3.5536-02 3.6916-02	4.2966-02 4.296-02 4.366-02 4.493-02 4.176-02 4.138-02	259E	5.698E-02 5.728E-02 5.758E-02 5.768E-02 5.752E-02 5.752E-02	5,670E-02 5,629E-02 5,526E-02 5,467E-02 5,463E-02 5,360E-02 5,36E-02 5,263E-02 5,263E-02 5,189E-02	
1.6279 1.6408 1.6533 1.6654 1.6654	1.6654 1.6654 1.6654 1.6654 1.6493	1.6264 1.6264 1.5896 1.5896 1.5690 1.5522	1.4057 1.4758 1.4056 1.3561 1.3266 1.2980	1.2372 1.2050 1.1716 1.1370 1.1012 1.0641 1.0259 0.9865	0.6444 0.5664 0.5664 0.7477 0.6639 0.5666 0.5666	0.5000 0.48625 0.5068 0.5068 0.5068 0.5529 0.6824 0.6824 0.1260
843.0 843.0 843.0	859.0 863.0 863.0 867.0 871.0	6644 6644 6644 6644 6644 6644 6644 664	911.0 915.0 923.0 927.0 935.0 935.0	951.0 955.0 959.0 963.0 967.0 975.0	985.0 995.0 995.0 1003.0 1007.0 1011.0 1015.0	1031.0 1035.0 1035.0 1035.0 1043.0 1043.0 1051.0 1055.0 1063.0 1063.0 1063.0
2.450E-02 2.576E-02 2.704E-02 2.836E-02 2.969E-02	3.24.2E-02 3.380E-02 3.518E-02 3.516-02	4.0688-02 4.0688-02 4.2028-02 4.3338-02 4.4628-02 4.58878-02	5.0436-02 5.0436-02 5.1436-02 5.3246-02 5.4056-02 5.4776-02 5.6006-02	5.690E-02 5.72E-02 5.76E-02 5.76IE-02 5.76E-02 5.76E-02 5.75E-02	5.640E-02 5.640E-02 5.640E-02 5.593E-02 5.5419E-02 5.352E-02 5.208E-02 5.208E-02	5.056-02 4.979E-02 4.978E-02 4.758E-02 4.686E-02 4.61E-02 4.507E-02 4.507E-02 4.507E-02 4.301E-02 4.391E-02
1.6246 1.6376 1.6502 1.6624	1.6654 1.6654 1.6654 1.6654	1.6294 1.66394 1.56032 1.5686 1.5565 1.5565	1.5007 1.5007 1.4584 1.4386 1.3868 1.3368 1.3356	1.2450 1.2132 1.1801 1.1458 1.1103 1.0735 1.0356	0.9562 0.8725 0.8725 0.7857 0.673 0.6550 0.6550	0.5146 0.4957 0.4981 0.5020 0.5244 0.5544 0.5544 0.6297 0.6717
834.0 838.0 842.0 846.0	854.0 858.0 862.0 840.0		9100 9100 9100 9220 9320 9340 9440 9460	950.0 954.0 958.0 962.0 970.0 974.0	982.0 986.0 996.0 994.0 998.0 1002.0 1016.0 1014.0 1018.0	1026.0 1034.0 1034.0 1038.0 1045.0 1045.0 1050.0 1065.0 1065.0
2.419E-02 2.544E-02 2.672E-02 2.803E-02	3.071E-02 3.345E-02 3.445E-02 3.443E-02 3.463E-02	3. 60E-02 3. 89E-02 4. 168E-02 4. 300E-02 4. 556E-02 4. 556E-02	1111111111.	5.680E-02 5.715E-02 5.740E-02 5.740E-02 5.740E-02 5.759E-02 6.759E-02	5,170E-02 5,686E-02 5,685E-02 5,605E-02 5,436E-02 5,436E-02 5,369E-02 5,277E-02	5.075E-02 4.928E-02 4.824E-02 4.846E-02 4.773E-02 4.637E-02 4.520E-02 4.471E-02 4.396E-02
1.6213	1.6654	1.6500 1.5620 1.5620 1.5607 1.5607	1.5051 1.4657 1.4657 1.4414 1.4178 1.3674 1.3674 1.2832	1.2528 1.2212 1.1885 1.1192 1.0828 1.0452	0.9663 0.9252 0.8832 0.8402 0.7966 0.7966 0.7966 0.6566 0.658	
83310 837.0 841.0	85310 861.0 865.0	6673.0 6873.0 685.0 6893.0 6973.0	9405.0 9905.0 913.0 921.0 9291.0 9291.0 933.0 9411.0	95340 95340 95340 96540 96940 97340	981.0 985.0 989.0 993.0 997.0 1001.0 1009.0 1013.0	1025.0 1029.0 1033.0 1033.0 1045.0 1049.0 1057.0 1065.0

.359E-02 .366E-02 .365E-02	
0.8679 4 0.9104 4 0.9518 4	
1080.0	
4.359E-02 4.363E-02 4.379E-02 4.407E-02	
0.8572 0.8998 0.9415 0.9822	
1079.0 1083.0 1087.0 1091.0	
4.350E-02 4.351E-02 4.374E-02	
0.8464 0.8893 0.9312 0.9721	
1078.0 1082.0 1086.0	_
+.362E-02 +.360E-02 +.369E-02 +.391E-02	LAST RN 5 198066381
0.8356 4 0.8786 4 0.9208 4 0.9620 4	FIRST RN 1784322405
1077.0 1081.0 1085.0 1089.0	1NPUT RN 1784322405

TABLE G3 FLARE PROGRAM OUTPUT LISTING - IBM SYSTEM 360/50 (Continued)

Ī - P/CHe+2-MISSION 1500.00 PHI (E) 2 PROTON FLUX FREQUENCY DISTRIBUTION ENCOUNTER FLUXES GREATER THAN OR EQUAL ENERGY-100.00 WHICH 39.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100 MISS IONS 10.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100 I PERCENT OF Ξ

TABLE G3 FLARE PROGRAM OUTPUT LISTING - IBM SYSTEM 360/50 (Continued)

ALPHA FLUX FREQUENCY DISTRIBUTION (PERCENT OF MISSICNS WHICH ENCOUNTER FLUXES GREATER THAN OR EQUAL TO PHISS) - A/CM**2-MISSION)

РНІ	1.0f 02 2.0f 02 4.0f 02 6.0f 02 8.0f 02	1.0E 03	6.0E 03 8.0E 03	1.0F D4 2.0F 04	6.0E 04						90 30.9				8.0E 07				8.0 5 08									2.0€ 11			1.05 12	2.06 12	4.0E 12	6.0E 12
1500.00	\$2.00 35.00 25.50 22.00	13.50	5.03	2.03	0.50	00.00	0.50	00	0.0		5 : 0 :		5°0		3	Ç.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9 0	0	0.0	0.0	0.0	000	0.0	0.0	00
1000.00	88.00 79.50 70.50 64.00	40.00 00.00	23.00	13.50	9.50	2.50	1.50	1.00	0.50	0.0	••	0	0.0	000	0.0	0.0	0	0.0	0.0	0.0	0.0	9 0	0.0	0.0	0.0	200	0.0	0.0	0.0	000	0.0	0.0	200	00
400.00	100.00	100.00	95.50 93.50	91.50	60.00	52.50	31.50	21.50	18.50	7.00	4.50	2.50	2.00	0.50	0.50	0.50	0.0	0.0	0.0	0.0	0.0	9 6	0.0	0.0	•	•	0.0	0.0	0.0		0.0	0.0	•	
MEV 200.00	100.00	100.00	100.00	100.00	98.00	95.50	77.50	65.50	60.00	41.50	30.50	23.00	14.00	6.50	3.50	3.50	1.00	0.50	000	0	0.0	000	0.0	0.0	0 0	0.0	0.0	0.0	0	000	0.0	0.0	0.0	0.0
ENER GY-MEV 1.00.00	100.00 100.00 100.00 100.00	100.00	100.00	100.00	100.00	100.00	99.00	97.50	96.50	76.50	67.00	29.00	52.00	27.50	25.00	16.00	7.00	2.00	3.50	2.00	0.50	000	0.0	0.0	0.0	0.0	0.0	0.0	200	0	0.0	0.0		0.0
20.00	100.00 100.00 100.00 100.00	00.001	100.00	100.001	00.001	100.00	100-00	100.00	100.00	97.50	95.50	91.50	80.00	60.50	57.50	36.50	27.50	23.50	16.50	9.50	5.00	2.50	2.50	00.0	000	0.0	0.0	0.0		0.0	0.0	0.0	0	0*0
30.00	100.00 100.00 100.00 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.50	99.50	97.50	93.50	78.00	70.00	56.50	43.50	35.50	31.00	18.50	13.00	8.50	6.50	3.50	00-1	1.00	0.50	0 0		0.0	0.0	0,0	0	0.0
10.00	100.00 100.00 100.00 100.00	100.00	100.00	100.00	100.001	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.50	96.00	93.50	94.50	05.69	62.00	53.00	40.50	35.00	23.00	17.50	00.4	00.9	3.50	2.50	00.1	20.0	0.50	0.50	0.0	0.0	0.0
I Hd	1.0E 02 2.0E 02 4.10E 02 6.0E 02 8.10E 02															2.0E 08	4.0E 08	6.10E 08	1.0E 09	2.0E 09	4.0F 09	8-0E 09	1-0E 10	4.0F 10	6-0E 10	8.0E 10	1.0E 11	2.0E 11	6.10F 11	8.0E 11	1.0E 12	2.0E 12	6.0E 12	8.0E 12

APPENDIX H

Dose Program Input And Output Listings

Dose program test case input is shown in Table H1. The output listing is shown in Table H2.

This program requires an input tape prepared by the Geometry program sample problem (Volume II).

TABLE HI DOSE PROGRAM INPUT DATA

```
35A 2.7938117-3/5 2.15442-3 1.932865-3 SB 2.34551-6/5 2.0318594-6 2.1622
                                                                                                                                                                                                                                                                                                                                                                                                 3AA 2.8722918-4/5 2.1542266-4 1.8668739-4 AB 2.8692487-7/5 6.5164801-9
                                                                                                                                                                                                                                                                                                                      ς
()
         ¥
                                                                                                                                                                                                                                          3E 10 30 50 100 200 400 1+3 1500 EA 10 30 50 100 200 400 1+3 1500
                                                                                                                                                                                                                                                                          4.386
         ш
                                                                                                                                                                                                                                                                                        5.843+7 1.404+7 1.496+6 1.125+5 4.468+3 37.55 2.452
                                                                                                                                                                                                                                                                                                                     10000
         A
                                                                                                                                                                                                                                                                3PHI 1.098+9 8.446+7 2.052+7 2.97+6 3.551+5 1.884+4 7.869+1
      i.
                                                                                                                                                                                                                                                                                                          3FI 4.57+12 9.99+11 8.2+10 7.46+8 7.76+6 9.01+4 1.7+3 $9
  BIN FDC UNITS
                                                                                                                                                                                                                                                                                                                                     ELECTRON FLUX ENERGIES
                                                                                                                                                        18/2 AT 0/4 FDC 1.27324-9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            20 160 AZIM
                                                                                                                                                                                                3CA .061729277 CB 1.6119395 CC .2460117 $9
N31 PHI E MAT SA SB R1 HEAD NPHI NM N2 ND
                                                                                                                                 4NM 7 MAT 1 2 3 4 5 201 221 N2 26 ND 4 $9
                        AW CC NDM AA AB ARI EA PHA NPHA
                                                                                                                                                                                                                                                                                                                                                                                                                          ALPHA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            06
                                                                                                                                                                                                                                                                                                                                                                                                                      .9534441-8 ARI 1.75/6 1.775 $9
                                                                                                                                                                                                                                                                                                                                                                              1.8 $9 PROTON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0 180
                                                                                                                                                                                                                      8 NPHA 8 NDM 1 $9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   N4 NAR POLA AZIM NSKIP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4NSKIP 1 NAR 3 $=POLA
                                                                                        RAD/MISSION
                                                                                                                                                      32 13/5 7/2 AW 27/5
                                                                                                                                                                            3AT 27/5 18/2 $9
                                                                                                                                                                                                                                                                                     3PHA 5.666+8
                                                                                                          5BIN 1 C0184
                                                                                     5UNITS 3
                                                                 * *
                                                                                                                                                                                                                        4NPHI
                                                                                                                                                                                                                                                                                                                                                                          9-1
                                                                                                                                                                                                                                                                                                                                 4NE
```

ΤA L L BIN FDC UNITS N31 PHI E MAT SA SB RI HEAD NPHI NM N2 ND Z AW CC NDM AA AB AR1 EA PHA NPHA 0 QN1 A CB

R

EF

315

90

O

180

O

### \$1735-61 2.3455-60 1.7750-00 2.6723-04 2.6805-77 1.7500-00 2.6723-04 2.6		•	u Œ	*	***	A L D I	*	:	7 4 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ה ע	
14735-61 2.3455-60 1.7756-00 2.4723-04 2.4852-77 1.7506-00 2.4000-01 2.7706-	MATEFIAL	∀ ss	SB	.	4	Ϋ́	AR 1	u.	►	7	
### 1756-00 2-012-04 2-020-07 1-750-00 2-012-04 2-020-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00 2-010-07 1-750-00	-	₹•7536-63	2.3455-6c	1.7750+30	2.8723-04	2.8692-17	1.7560+00	2.0000-01	2.7000+01	1.3000+01	'n
### 2.750-0.0 2.000-0.0 2.	Ų	€.753E-€3	2,3455-06	1.7756+00	2.8723-04	2.8692-07	1.7500+09	2.0000-11	2.7900+41	1.3900+01	~
\$\text{\$15.45-6-0} \times \text{\$1.5756-00} \times \text{\$2.572-40} \times \text{\$2.580-0-07} \text{\$1.5750-00} \text{\$2.572-40} \text{\$2.580-0-07} \$2.580-0-07	יי	6.7538-63	2,3455-06	1.7750+00	2.8723-04	2.8692-07	1.7500+00	2.0000-01	2.7900+91	1.3000+01	'n
\$\frac{1}{2}\$ \frac{1}{2}\$ \fra	•	2.7538-43	2.3455-06	1.7756+00	2.8723-04	2.8692-07	1.7500+00	2.0000-01	2.7000+01	1.30001	8
ELECTION SECTION (C. 2.1542-04 0.5165-09 1.7500-00 1.0000-01 1.000	4)	£.7538-03	2.3455-06	1.7750+30	2.8723-04	2.8692-67	1.7500+03	2.0000-11	2.700n+31	1.34661	N
FCC = 1.2722-C6 1.8000-03 1.8059-04 4.9534-08 1.7756-00 6.1750-02 1.0119+00	707	2.1544-63	2.0319-06	1.7756+00	2-1545-04	6.5165-09	1.7500+00	1.0000+00	1.8000+11	7.0009.00	-
PH C T O N											
SA SB R1	DETECTOR				***	A L P I					
FCC = 1,2732-G\$ 1,8009-03 1,8009-04 4,9534-06 1,775f-07 0,1729-02 1,0119+07	MATERIAL		88	æ	¥¥	A.B		Š		ບ	
### FEC = 1.2732-C\$ ###################################	221	1.5329-03	2.1623-66	1.8000+00		4.9534-08	1.7756+00	6.1729-02		2.4611-01	
### SPECTRUM	81N ± CG1	FEC		y,							
PFA(1)		ALPFA S	PECTRUM								
E C C C C C C C C C C C C C C C C C C C	EAC		PFA(I)	HACE	040						
E-64200-07 7-76621+11 1-49640-07 4-32109+12 1-49640-07 4-32109+12 1-149640-07 4-32109+13 1-15960-09 5-7619+17 3-75501-01 6-81972+21 2-45200-00 6-81472+21 2-45200-00 7-8223+12 2-	1.606		66640408	6.62491+10	2.06790+	00					
1.49cd0.00 1.49cd0.00 1.1.5500.00 1.1.5500.00 1.1.5500.00 1.6.6519.17 2.4.6200.00 3.7.6203.10 2.4.5200.00 3.7.6203.10 2.4.6200.00 3.9916.12 3.5910.00 3.9916.12 3.5910.00 3.9916.12 3.5910.00 3.9916.12 3.600.00 4.5000.00 4.5000.00 5.600.00 5.	33.0		64300+07	7.76621+11	2.79140+	2					
1.49600406	6.000		40400404	4.32169+12	3.23036+	00					
11.5800405 5.7609715 4.4686643 1.66519417 3.75504401 6.81472421 4.45504401 6.81472421 4.45504401 6.81472421 4.45504401 1.0423412 5.4504401 2.47223412 5.4504401 1.86843423412 4.5604001 1.86843423412 5.4504401 1.86843423413 4.5604001 1.86843423413 5.45660400 6.8084343434343434343434343434343434343434	333-1		49640406	4.37681+13	3.73311+	00					
### ### ##############################	777.7		1.500+05	5.76097+15	4.65415+	8					
3.75504+01 5.81472+21 2.445204+01 0. 2.445204+01 0. 2.45221+11 1.45906+05 1.04623+12 2.45206+07 1.04623+12 2.45206+07 1.04623+12 2.45206+07 1.04623+12 2.45204+01 1.80843+23 2.65006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.650006+11 2.750004+06 2.750006+06 2.	4.600		46866+63	1.66519+17	5.21562+	3					
### ##################################	1.500		76500+01	5.81472+21	€.72997+(ç					
PHCTCN SPECTRUM 146900400 2-37321+11 146900400 2-37321+11 2-4500400 1-04223+12 2-57000400 1-98700+12 3-55100400 1-98700+12 3-55100400 1-98700+12 4-5600400 1-98043+23 4-57000411 6-5000400 1-9804000 7-6600400 1-9804000 1-10004000 1-9804000 1-10004000 1-9804000 1-10004000 1-9804000 1-10004000 1-9804000 1-10004000 1-9804000 1-10004000 1-9804000 1-10004000 1-9804000 1-10004000 1-9804000 1-10004000 1-980400 1-10004000 1-980	1.566		45200+60	•	:						
PHI(I) 1.4.5940+07 2.4523+11 2.45240+07 1.04223+12 2.4520-07 1.12137+12 2.57000+06 3.99155+12 3.55100+06 3.99155+12 3.55100+06 3.99155+12 4.28600+01 4.28600+01 5.55000+11 6.5000+01 7.46600+06 7.76600+06 5.1000+01 1.7100+03		PHCTCN	SPECTRUM								
1.65600000 2.37221+11 2.45600000 1.1023712 2.57000000 1.1023712 2.570000000 1.102021512 2.570000000 1.102021512 2.5500000000 1.10202319 2.5500000000 1.10202319 2.5500000011 2.5500000011 2.5500000011 2.5500000011 2.5500000011 2.5500000011 2.5500000011 2.5500000000000000000000000000000000000	EC		011(1)	334	6119						
ELECTRON SPECTRON 4.5600406 5.57000406 5.57000406 1.66500406 1.66500406 4.5600406 5.50004112 5.550004112 5.550004112 5.550004112 5.550004113 1.5000406 1.5000406 1.5000406 1.5000406 1.5000406 1.5000406	1.000		50+00850	2.37321+11	2.33473+	2					
Z.45200000 3.99505+12 Z.52000006 3.99505+12 J.55100006 3.99505+12 J.55000000 1.99700+13 J.55000000 0.79203+19 F.6111 A.570000011 S.550000000 J.46600000 F.76600000 F.76600000 F.76600000	373.5		44630+07	1.04223+12	2,76979+	00					
2.57000+0c 3.99105+12 3.55100+05 1.98060+15 1.88400+04 1.98060+15 7.88400+04 C. 4.38400+04 C. FIGURE PECTRUM FIGURE PECTRUM 7.58400+11 7.58400+04 5.11040+04 1.71600+04 1.71600+04	2,000		GE20C+07	1.12137+12	2.78850+6	8					
3.551404465 1.907504.15 1.6640446 6.792034.19 7.66504401 1.80843423 4.38604401 C. 8457064.12 5.550404.12 5.550404.14 6.5040408 7.46660408 7.76660408 7.76660408 1.776600408 1.776600408	1000		57000+0e	3.99105+12	3.06417+	2					
1.6 E 6 4 6 4 7 5 2 5 3 4 1 9 1 1 8 6 4 3 4 2 3 4 1 9 1 1 8 6 5 6 9 6 4 3 4 2 3 4 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.000		55100+05	1.98766+15	4.23635+	2					
T.ecouchol 1.80843+23 4.3EcOuchol C. ELECIRCN SPECTRLM FIG.1 6.550uG+12 C.550uG+11 7.6600408 7.76600408 7.76600408 1.71cuG+0-34 1.71cuG+0-34	1000		EE400+C4	6.79203+19	5.97869+(2					
4.3660460 G. ELECTRON SPECTRUM 4.57006112 5.55040411 6.55040411 7.46660406 7.7660406 7.7660406 1.776040603	1.00		86900+01	1.80843+23	7.12046+	2					
	1.506		38600+00	ះ	•						
		ELECTRO	N SPECTRUM								
	EE (2	F1(1)								
	3900		57000+12								
	1000		11+00055								
	333.8		20000+10								
	933.4		46663+0B								
	C. C. C.		76600+06								
	6 . CGC		€ 163C+34								
	1.000		766463								

TABLE H2 DOSE PROGRAM OUTPUT LISTING (Continued)

(Continued)

DETECTLG IN RIGHT EVE - LEFT MODULE. A.666 VD = 34.750 ZD = 26.000 Detector matemial number is 2.15

*** DETECTUR 1 DOSE UNITS ARE RAD/PISSION ***

TOTAL PA	TOTAL PACTCN COSE 1.7ué+02		101AL ALPHA DOSE 1.835+61	TOTAL ELECTRON DOSE 4.800+00	4.800+00	TOTAL BREMSSTRAMLUNG DOSE 0.	STRAMEUNG	# 8		
PCL A 0.00	PCLA A21M 0. 6. 186.60 166.00	PHGTCN PAHTIAL DOS	BEIGHT E FRACTION 0.69	ALPHA WEIGHT PARTIAL DOSE FRACTION 6 5.953+00 0.65	WEIGHT FRACTION 0.65	ELECTRON PARTIAL DOSE 1.483+00	WEIGHT FRACTION 9.62	ELECTRON WEIGHT RREMSSTRAMLUMG WEIGHT PARTIAL DOSE FRACTION PARTIAL DOSE FRACTION S 1.4483+00 7.62 0.	WE LGHT FRACTION	SOLID ANGLE 6,278+0A
PCL 4	42 LH 0 56 - 4 6	PRCTCN PARTIAL DOSE 3.555+41	BEIGHT FRACTION 1.42	PRCICE MEIGHT ALPHA WEIGHT PARTIAL DOSE FRACTION PARTIAL DOSE FRACTION PARTIAL DOSE FRACTION P 3.65240 1.43	WEIGHT FRACTION 1.43	ELECTRON ARTIAL DOSI 1.061+00	WEIGHT FRACTION 1.50	MEIGHT BREMSSTRAMLUNG WEIGHT FRACTION PARTIAL DOSE FRACTION SOI 1.59 0.	WEIGHT FRACTION	SOLID ANGLE 1.849+An
PCL 2 20.60	7217 115.00 45.00	#21H PHCTON 315,CG PARTIAL DUSE 45,CG 6,362+01	BE16HT FRACTIO 2.16	ALPHA PARTIAL DOSE 9.620+60	WEIGHT FRACTION 2.33	ELECTRON ARTIAL DOSE 2.615+00	WEIGHT FRACTION 2.42	WEIGHT BREMSSTRAMLUNG WEIGHT FRACTION PARTIAL DOSE FRACTION S. 2.42 0.	MEIGHT FRACTION	SOLID ANGLE 2.828+98
	ų.	6.046401	1.04	7.400+00	1.03	1.03 1.956+90	1.04 0.	:	÷	4.932+40

TABLE H2 DOSE PROGRAM OUTPUT LISTING (Continued)

DETECTOR IN ABCUMEN — LEFT MODULE. XC = 0. YD = 36.000 DETECTOR MATERIAL NUMBEN IS 221

-1.000 **2** 07 *** DETECTOR 2 DOSE UNITS ARE RAD/MISSION

**

PRCTCN BEIGHT ALPHA WEIGHT ELECTRON WEIGHT BRENSSTRAHLUNG WEIGHT
PARTIAL DUSE FRACTION PARTIAL DOSE FRACTION PARTIAL DOSE FRACTION SOLID ANGLE
2.411.60 1.04 3.548-62 1.03 0. 0. 0. PRETEN BEIGHT ALFHA BEIGHT ELECTRON WEIGHT BREMSSTRAMLUNG BEIGHT PARTIAL DUSE FRACTION SOLID ANGLE 6.4446-01 6.98 8.168-03 0.99 0. 1.5794~n TOTAL BREMSSTRAMLUNG DOSE TOTAL ELECTRON DOSE TOTAL ALPHA DOSE C. 594-62 TOTAL PRCTCN DOSE 5-214+06 18..64 180.00

TABLE H2 DOSE PROGRAM OUTPUT LISTING (Continued)

GETECTOF IN MIGHT EYE - RIGHT MODULE. AC = -4.66G YD = -37.25G ZD = DETECTOR MATERIAL NUMBER IS 221

*** CETECTOR 3 COSE UNITS ARE RAC/MISSION

:

	1G4T SOLID ANGLE . 6.249+80	ICTION SOLID ANGLE	IGHT ICTION SOLID ANGLE 1. 2.429+AD	S. n67+60
35 DO	WEIGHT BREMSSTRAMLUNG WEIGHT SE FRACTION PARTSL DOSE FRACTION 9 0.49 0.49	MEIGHT ELECTRON WEIGHT BREMSSTRAMLUNG WEIGHT FRACTION PARTIAL DOSE FRACTION O.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	WEIGHT BREMSSTRAMLUNG WEIGHT FRACTION PARTIAL DOSE FRACTION 0.00 R. 7.	
TRAMEUNG	WEIGHT FRACTION 0.49	WEIGHT FRACTION 0.	WEIGHT FRACTION 9.00	1.86
TOTAL BREMSSTRAMLUNG DOSE 0.	ELECTRON PARTIAL DG 1.452+00	ELECTRON PARTIAL DOSE 0.	ELECTRON PARTIAL DOSE 1.745-93	4.449+00
RON DOSE	WEIGHT FRACTION 0.52	WEIGHT FRACTION 0.00	WEIGHT FRACTION 0.05	1.81
TOTAL ELECTRON DOSE 5.903+00	ALPHA PARTIAL DOSE 5.604+60	PRCTCN BEIGHT ALPHA PARTIAL DOSE FRACTION PARTIAL DOSE 5.773-01 0.03 8.697-63	PRCTCN BEIGHT ALPHA WEIGHT ELECTRON PARTIAL DUSE FRACTION PARTIAL DOSE 4.514+6C 6.12 1.918-01 0.05 1.745-93	1.586+01
2.164+01	BEIGHT FRACTION 0.56	BEICHT FRACTION 0.03	BEIGHT FRACTION 0-12	1.73
TOTAL	PROTCN PARTIAL DOSE 5.461+61	PRCTCN PARTIAL DOSE 5.773-01	PRCTCN PARTIAL DUSE 4.514+00	1.366+62 1.73
TOTAL PROTCN DOSE 1.558402	PCL # A21# 0. 6. 180.66	07:75 177	A21H 315.00	(3
101AL PR	PCL / 0.	PCL / 0 .00	PCLA 20.00	GENATACER

Ą

000-1 = 07 DETECTOR IN ABDOMEN - RIGHT MODULE.

XC = G. YU = -30.000
DETECTUR MATERIAL NUMBER IS 221 *** DETECTUR 4 DOSE UNITS ARE RAD/MISSION

:

TCTAL PECTCN CCSE TOTAL ALPHA DGSE TOTAL ELECTRON DGSE TOTAL BREMSSTRAMLUNG DGSE 1.213400 0.556-62

SOLID ANGLE 6.015+7f	SOLID ANGLE	SOLID ANGLE 2.677+ÅR	5.133+06
WEIGHT FRACTION	WEIGHT FRACTION 9.	WEIGHT FRACTION	;
WEIGHT BREMSSTRAMLUNG WEIGHT FRACTION PARTIAL DOSE FRACTION 7. 0. 1.	WEIGHT BREMSSTRAMLUNG WEIGHT FRACTION PARTIAL DOSE FRACTIO 9. n. n.	WEIGHT BREMSSTRAHLUNG WEIGHT FRACTION PARTIAL DOSE FRACTION 0.	•
	WEIGHT FRACTION 9.		:
ELECTRON PARTIAL DOSE 0.	ELECTRON PARTÍAL DOSE (ELECTRON PARTIAL DOSE 0.	•
#EIGHT FRACTION 0.96	WEIGHT FRACTION 0.83	WEIGHT FRACTION 1.10	1.02
ALPHA Partial Dose 3.037-62	ALPHA PARTÍAL DOSE: 0.950-03	ALPHA Partial DGSE 1.549-62	2,756-62
MEIGHT RACTION 6.96	MEIGHT FRACTION 1 0.65	MEIGHT FRACTION 1-11	1.62
PHCTON PARTIAL DOSE F 2.389400	PRCTCN PARTIAL OUSE 5.616-41	PACTON PARTIAL DOSE 1.231+40	2-166+00
A2 [P C. 1 E G . C C	A217 C. Sc.cc	A21P 315.66	1Z
PCL1 6.1	FCL1	PCL / 20.00 160.60	REMAINCER

REFERENCES

- 1. Abetti, G.: Solar Research, The MacMillan Co.; New York, N. Y.; 1963.
- Adamson, D.; Davidson, R. E.: Statistics of Solar Cosmic Rays as Inferred from Correlation with Intense Geomagnetic Storms, NASA TN D-1010; Washington, D. C.; February, 1962.
- 3. Allen, C. W. (ed.): Tenth Report on Solar Terrestrial Relations, Planetary and Space Science, Vol. 12; May, 1964.
- Allen, C. W.: The Influence of the Sunspot Cycle on Phenomena at the Bottom of the Atmosphere, Planetary and Space Science, Vol. 12, p. 327; May, 1964.
- Allen, R. I.; Bly, F. T.; Dressler, A. J.; Douglass, C. C.; Perkins, J. F.; Price, H. C.; Schofield, W. M.; Smith, E. C.: Shielding Problems in Manned Space Vehicles, NR 140; Lockheed-Georgia Co., Marietta, Ga.; September, 1961.
- 6. Anderson, K. A.: Preliminary Study of Prediction Aspects of Solar Cosmic Ray Events, NASA TN D-700; Washington, D. C.; April, 1961.
- 7. Antalova, A.; Gnevyshev, M. N.: Principal Characteristics of the 11-Year Solar Activity Cycle, Soviet Astronomy AJ, Vol. 9, no. 2, p. 198; September October, 1965.
- 8. Bailey, D. K.: Polar Cap Absorption, Tenth Report on Solar Terrestrial Relations, Planetary and Space Science, Vol. 12, p. 495; May, 1964.

- Bailey, L. E.: Angle and Energy Distributions of Charged Particles from the High - Energy Nuclear Bombardment of Various Elements, UCRL 3334; Berkeley, California; 1956.
- Baktai, M.; Feyesh, I.; Horvat, A.: Reflection of Solar Activity in the Behavior of the Annual Rings of "Pinus Tarnocienzica" of the Miocene Period,
 Soviet Astronomy AJ Vol. 8, no. 2, p. 322; September October, 1964.
- 11. Berger, M. J.; Seltzer, S. M.: Energy Spectra and Angular Distributions of Electrons Transmitted Through Sapphire (Al₂O₃) Foils, NASA SP-3008; Washington, D. C.; 1964.
- Berger, M. J.; Seltzer, S. M.: Transmission of 1 MeV Electrons Through Aluminum, NBS Report 8900; U. S. Department of Commerce; National Bureau of Standards, Washington, D. C.; June 1965.
- 13. Berger, M. J.; Seltzer, S. M.: Tables of Energy Losses and Ranges of Electrons and Positrons, NASA SP-3012; Washington, D. C.; 1964.
- Billingham, J.: Apollo Dose Limits, Second Symposium on Protection Against Radiations in Space, Gatlinburg, Tenn., October 12 through 14, 1964; NASA SP-71, p. 139; 1965.
- 15. Brooks, C. E. P.: Seventh Report on Solar Terrestrial Relations, Planetary and Space Science, p. 183; 1951.
- Burrell, M. O.: The Calculation of Proton Penetration and Dose Rates, Second Symposium on Protection Against Radiations in Space, Gatlinberg, Tenn., October 12 through 14, 1964; NASA SP-71, p. 493; 1965.

- 17. Burrell, M. O.: Private Communication.
- Crespo, V. P.; Alexander, J. M.; Hyde, E. K.: Ejection of Large Fragments in High-Energy Nuclear Reactions, Phys. Rev., Vol. <u>131</u>, no. 4, p. 1765; August, 1963.
- 19. Goldstein, H.: Fundamental Aspects of Reactor Shielding, Addison Wesley Publishing Co., Inc., Reading, Mass.; 1959.
- 20. Gnevyshev, M. N.: New Data on Solar Activity and its Influence on the Earth, Akademiya Navk SSSR, Vestnik, no. 5, p. 67; 1965.
- 21. Gregory, J. B.: Particle Influx at High Latitudes, 2. Solar Protons, J. Geophys. Res., Vol. <u>68</u>, no. 10, p. 3097; May, 1963.
- 22. Hess, W. N. (ed.): AAS NASA Symposium on the Physics of Solar Flares, Greenbelt, Maryland, October 28 through 30, 1963, NASA SP-50, 1964.
- Hill, C. W.; Douglass, C. C.; Ritchie, W. B.; Simpson, K. M., Jr.: Computer Programs for Shielding Problems in Manned Space Vehicles, ER 6643, Lockheed-Georgia Co., Marietta, Ga.; January, 1964.
- 24. Hill, C. W.; Ritchie, W. B.; Simpson, K. M., Jr.: Data Compilation and Evaluation of Space Shielding Problems – Range and Stopping Power Data, Volume I, ER 7777, Lockheed–Georgia Co., Marietta, Ga.; July 1965.
- Hill, C. W., Ritchie, W. B.; Simpson, K. M., Jr.: Data Compilation and Evaluation of Space Shielding Problems - Dose Calculations In Space Vehicles, Volume II, ER 7777, Lockheed-Georgia Co., Marietta, Ga.; August, 1965.

- 26. Hodgman, C. D. (ed.): Mathematical Tables from Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., Cleveland, Ohio; 1954.
- 27. Korteling, R. G.; Hyde, E. K.: Interaction of High-Energy Protons and Helium lons with Niobium, Phys, Rev., Vol. 136, no. 28, p. 8425; October, 1964.
- 28. Malitson, H. H.; Webber, W. R.: A Summary of Solar Cosmic Ray Events, Solar Proton Manual, NASA TR R-169, p. 1, Washington, D. C.; 1963.
- 29. Mar, B. W.: Electron Shielding Codes for Evaluation of Space Radiation Hazards, D2-90414, The Boeing Co., Seattle, Wash.; 1963.
- McGowan, F. K.; Milner, W. T.; Kim, H. J.: Nuclear Cross Sections for Charged-Particle Induced Reactions - Mn, Fe, Co, ORNL - CPX 1; 1964.
- 31. McGowan, F. K.; Milner, W. T.; Kim, H. J.: Nuclear Cross Sections for Charged-Particle Induced Reactions Ni, Cu, ORNL CPX 2; September, 1964.
- 32. Modisette, J. L.: Apollo Radiation Environment Analysis, Second Symposium on Protection Against Radiations in Space, Gatlinburg, Tenn., October 12 through 14, 1964, NASA SP-71, p. 147; 1965.
- Parker, E. N.: <u>Interplanetary Dynamical Processes</u>, Interscience Publishers,
 John Wiley and Sons, New York, N. Y.; 1963.
- Scott, M.: <u>Mechanics</u>, p. 304, McGraw Hill Book Co., Inc., New York, N. Y., 1949.

- 35. Smith, H. J.; Smith, E. v. P.: Solar Flares, The MacMillan Co., New York, N. Y.; 1963.
- Vette, J. I.: Models of the Trapped Radiation Environment, Volume I, Inner Zone Protons and Electrons, NASA SP-3024, Washington, D. C.; 1966.
- 37. Vette, J. I.: Private Communication.
- 38. van de Vijver, R.: Excitation Function for Alpha-Induced Reactions on Gold, Physica, Vol. 29, p. 1214; 1963.
- 39. Warwick, C. S.: Propagation of Solar Particles in the Interplanetary Magnetic Field, J. Geophys. Res., Vol. <u>67</u>, p. 1333; 1962.
- 40. Webber, W. R.: A Review of Solar Cosmic Ray Events, AAS NASA Symposium on the Physics of Solar Flares, Greenbelt, Maryland, October 28 through 30, 1963., NASA SP-50, p. 215; 1964.