980 research outputs found

    Competition of mixing and segregation in rotating cylinders

    Full text link
    Using discrete element methods, we study numerically the dynamics of the size segregation process of binary particle mixtures in three-dimensional rotating drums, operated in the continuous flow regime. Particle rotations are included and we focus on different volume filling fractions of the drum to study the interplay between the competing phenomena of mixing and segregation. It is found that segregation is best for a more than half-filled drum due to the non-zero width of the fluidized layer. For different particle size ratios, it is found that radial segregation occurs for any arbitrary small particle size difference and the final amount of segregation shows a linear dependence on the size ratio of the two particle species. To quantify the interplay between segregation and mixing, we investigate the dynamics of the center of mass positions for each particle component. Starting with initially separated particle groups we find that no mixing of the component is necessary in order to obtain a radially segregated core.Comment: 9 pages, 12 figures (EPIC/EEPIC & EPS, macros included), submitted to Physics of Fluid

    High-efficiency, radiation-resistant GaAs space cells

    Get PDF
    Although many GaAs solar cells are intended for space applicatons, few measurements of cell degradation after radiation are available, particularly for cells with efficiencies exceeding 20 percent (one-sun, AMO). Often the cell performance is optimized for the highest beginning-of-life (BOL) efficiency, despite the unknown effect of such design on end-of-life (EOL) efficiencies. The results of a study of the radiation effects on p-n GaAs cells are presented. The EOL efficiency of GaAs space cell can be increased by adjusting materials growth parameters, resulting in a demonstration of 16 percent EOL efficiency at one-sun, AMO. Reducing base doping levels to below 3 x 10(exp 17)/cu m and decreasing emitter thickness to 0.3 to 0.5 micron for p-n cells led to significant improvements in radiation hardness as measured by EOL/BOL efficiency ratios for irradiation of 10(exp -15)/sq cm electrons at 1 MeV. BOL efficiency was not affected by changes in emitter thickness but did improve with lower base doping

    Mixing and condensation in a wet granular medium

    Get PDF
    We have studied the effect of small amounts of added liquid on the dynamic behavior of a granular system consisting of a mixture of glass beads of two different sizes. Segregation of the large beads to the top of the sample is found to depend in a nontrivial way on the liquid content. A transition to viscoplastic behavior occurs at a critical liquid content, which depends upon the bead size. We show that this transition can be interpreted as a condensation due to the hysteretic liquid bridge forces connecting the beads, and provide the corresponding phase diagram.Comment: submitted to PR

    Interstitial gas and density-segregation in vertically-vibrated granular media

    Full text link
    We report experimental studies of the effect of interstitial gas on mass-density-segregation in a vertically-vibrated mixture of equal-sized bronze and glass spheres. Sufficiently strong vibration in the presence of interstitial gas induces vertical segregation into sharply separated bronze and glass layers. We find that the segregated steady state (i.e., bronze or glass layer on top) is a sensitive function of gas pressure and viscosity, as well as vibration frequency and amplitude. In particular, we identify distinct regimes of behavior that characterize the change from bronze-on-top to glass-on-top steady-state.Comment: 4 pages, 5 figures, submitted to PRL; accepted in PRE as rapid communication, with revised text and reference

    Stretching and folding versus cutting and shuffling: An illustrated perspective on mixing and deformations of continua

    Full text link
    We compare and contrast two types of deformations inspired by mixing applications -- one from the mixing of fluids (stretching and folding), the other from the mixing of granular matter (cutting and shuffling). The connection between mechanics and dynamical systems is discussed in the context of the kinematics of deformation, emphasizing the equivalence between stretches and Lyapunov exponents. The stretching and folding motion exemplified by the baker's map is shown to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic mixing. On the other hand, cutting and shuffling does not stretch. When an interval exchange transformation is used as the basis for cutting and shuffling, we establish that all of the map's Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per unit volume, is shown to be exponentially fast when there is stretching and folding, but linear when there is only cutting and shuffling. We also discuss how a simple computational approach can discern stretching in discrete data.Comment: REVTeX 4.1, 9 pages, 3 figures; v2 corrects some misprints. The following article appeared in the American Journal of Physics and may be found at http://ajp.aapt.org/resource/1/ajpias/v79/i4/p359_s1 . Copyright 2011 American Association of Physics Teachers. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the AAP

    Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications

    Get PDF
    High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell

    Lifetimes of Confined Acoustic Phonons in Ultra-Thin Silicon Membranes

    Get PDF
    We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultra-thin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from \sim 4.7 ns to 5 ps with decreasing membrane thickness from \sim 194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Subdiffusive axial transport of granular materials in a long drum mixer

    Full text link
    Granular mixtures rapidly segregate radially by size when tumbled in a partially filled horizontal drum. The smaller component moves toward the axis of rotation and forms a buried core, which then splits into axial bands. Models have generally assumed that the axial segregation is opposed by diffusion. Using narrow pulses of the smaller component as initial conditions, we have characterized axial transport in the core. We find that the axial advance of the segregated core is well described by a self-similar concentration profile whose width scales as tαt^\alpha, with α∼0.3<1/2\alpha \sim 0.3 < 1/2. Thus, the process is subdiffusive rather than diffusive as previously assumed. We find that α\alpha is nearly independent of the grain type and drum rotation rate within the smoothly streaming regime. We compare our results to two one-dimensional PDE models which contain self-similarity and subdiffusion; a linear fractional diffusion model and the nonlinear porous medium equation.Comment: 4 pages, 4 figures, 1 table. Submitted to Phys Rev Lett. For more info, see http://www.physics.utoronto.ca/nonlinear
    • …
    corecore