We compare and contrast two types of deformations inspired by mixing
applications -- one from the mixing of fluids (stretching and folding), the
other from the mixing of granular matter (cutting and shuffling). The
connection between mechanics and dynamical systems is discussed in the context
of the kinematics of deformation, emphasizing the equivalence between stretches
and Lyapunov exponents. The stretching and folding motion exemplified by the
baker's map is shown to give rise to a dynamical system with a positive
Lyapunov exponent, the hallmark of chaotic mixing. On the other hand, cutting
and shuffling does not stretch. When an interval exchange transformation is
used as the basis for cutting and shuffling, we establish that all of the map's
Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per
unit volume, is shown to be exponentially fast when there is stretching and
folding, but linear when there is only cutting and shuffling. We also discuss
how a simple computational approach can discern stretching in discrete data.Comment: REVTeX 4.1, 9 pages, 3 figures; v2 corrects some misprints. The
following article appeared in the American Journal of Physics and may be
found at http://ajp.aapt.org/resource/1/ajpias/v79/i4/p359_s1 . Copyright
2011 American Association of Physics Teachers. This article may be downloaded
for personal use only. Any other use requires prior permission of the author
and the AAP