
Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes
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We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin

free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical

sampling, we observe that the decay time of the first-order dilatational mode decreases significantly

from �4:7 ns to 5 ps with decreasing membrane thickness from �194 to 8 nm. The experimental results

are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface

roughness scattering including a wavelength-dependent specularity. Our results provide insight to under-

stand some of the limits of nanomechanical resonators and thermal transport in nanostructures.
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Mechanical and acoustic properties in the nanoscale are
receiving increasing attention as they are key properties
affecting the limits of ultrasensitive detectors of force [1],
mass [2,3], charge [4,5], and spin [6], influencing platforms
for biosensing [7] and the investigation of quantum behav-
ior in extended objects [8]. In particular, phonon lifetimes
influence the achievable mechanical quality (Q) factors
in nanomechanical resonators, which often limit device
performance [9]. Moreover, they are necessary input para-
meters for accurate calculations of nanoscale thermal
transport, with high-impact applications such as heat man-
agement in nanoelectronics [10] and the engineering of
novel thermoelectric materials [11]. Despite their impor-
tance, phonon lifetimes are perhaps the least well known
of all phonon properties due to the challenges associated
with their quantitative determination and theoretical
modelling. Even though silicon is the most important
material for nanoelectronics, micro and nanoelectrome-
chanical systems, there are few experimental reports of
direct measurements of phonon lifetimes in the gigahertz
to terahertz range [12] and for all materials, open questions
remain about the relative contributions of intrinsic and
extrinsic scattering processes at high frequencies in both
bulk and nanoscale structures [9,13–16]. Recent experi-
mental investigations of phonons in superlattice cavities
with frequencies of around 1 THz have suggested that
lifetimes of high-frequency phonons could be limited by
an average interface roughness of just 0.06 nm [17]. On the
other hand, phonon wave packet experiments in bulk
silicon with frequencies up to approximately 100 GHz
were analysed with a simplified Akhiezer relaxation damp-
ing model [12,18] of intrinsic scattering, using an average
lifetime of high-frequency thermal phonons of 17 ps. Other
intrinsic damping models include clamping losses [19],

thermoelastic dissipation [20], and three-phonon interac-
tions [21], which predict a different behavior depending on
the frequency and temperature regimes. In this context,
generation and detection of coherent acoustic phonons at
high frequencies in different materials and nanostructures
is a promising method to obtain quantitative information
on phonon lifetimes and compare with the main theoretical
models.
Here we use free-standing single-crystalline silicon

membranes fabricated by back-etching (100)-oriented
silicon-on-insulator wafers to study the decay of coherent
phonons. These membranes are model systems for such
studies, as they can be fabricated with precisely controlled
dimensions and physical parameters, facilitating compari-
son with theoretical models since the analysis is free from
interplay with a substrate. This type of membrane was used
previously to observe confined acoustic phonons [22] and
study their dispersion relation [23] using inelastic light
scattering. We use the ultrafast pump-probe technique of
high-speed asynchronous optical sampling (ASOPS) to
generate and detect coherent acoustic phonons [24], with-
out the use of any transducing metallic layer. We perform
measurements over a large range of thickness values
from 7:7� 0:5 to 194� 1 nm, allowing us to investigate
the trend in phonon lifetime with frequency up to
�500 GHz and compare with predictive models. We com-
pare the experimental results with theories involving in-
trinsic phonon-phonon interactions and extrinsic surface
roughness scattering with a wavelength-dependent specu-
larity parameter.
The ASOPS experiments were performed at room tem-

perature in reflection geometry. The spot size on the mem-
branes was about 1:75 �m in diameter and thewavelengths
used for pump and probe beams were 780 and 810 nm,
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respectively. Because of the large optical penetration depth
of �800 nm light in Si of approximately 8 �m, the pump
pulse causes a symmetric strain in the membrane via
thermal expansion and the hydrostatic deformation poten-
tial [25,26]. As a consequence, the first-order dilatational
mode at qk ¼ 0,D1

qk¼0, is excited in the illuminated region,

which oscillates at a frequency of ! ¼ �vL=d0, where
vL ¼ 8433 m s�1 is the longitudinal velocity and d0 is the
thickness of the membrane. This mode is identified in the
dispersion relation in Fig. 1(a). The dilatational oscillation
changes the optical cavity thickness of the membrane,
which in turn modulates the reflectivity according to the
well-known Fabry-Pérot effect. Even though the change in
membrane thickness is of the order of 1 pm and below
[Fig. 1(b)], corresponding to a small change in reflectivity
of about one part in 10�5, the ASOPS system is sensitive
enough to detect these small changes in reflectivity. A
change in reflectivity is also caused by the photoelastic
effect; however, the change of the optical cavity thickness
is the dominant contribution, owing to the small photoelas-
tic constants of silicon. The subsequent dynamics of the
confined phonons are then observed by recording the light
modulation induced by phonon-photon coupling in a one-
dimensional photo-acoustic cavity.

Figure 2 shows typical time traces of the reflectivity
signal from silicon membranes with thickness values of

30 and 100 nm after excitation. At short times, the fast
electronic response of the membrane is observed. The
electronic contribution can be modelled by a biexponential
decay and subtracted to reveal the acoustic modes [27,28],
shown in the inset. The decay of the excited coherent
phonons is then modelled as a damped harmonic oscillator

of the form �R
R ðtÞ ¼ A sinð!tÞ expð�t=�Þ to extract a single

phenomenological decay time �. The obtained lifetimes
are plotted in Fig. 3 and compared to reported values for
bulk silicon [12] and previous results for a 222 nm silicon
membrane [28]. The frequencies are those of the D1

qk¼0

mode, which increase with decreasing membrane thick-
ness. It is observed that the lifetimes of coherent phonons
in thin silicon membranes decrease dramatically with
increasing frequency (decreasing thickness) and do not
exhibit a simple behavior as a function of frequency. It is
also interesting to note that the measured lifetimes are
shorter than those observed by Daly et al. in Ref. [12].
In order to analyze our experimental data, we first con-

sider intrinsic damping mechanisms, which are inherent to
even perfectly crystalline bulk materials. At high frequen-
cies (>10 GHz), there are two main approaches to model
the intrinsic phonon lifetimes due to the anharmonicity of
the lattice. One commonly used model is that of Akhiezer
relaxation damping, which considers the effect of the
acoustic strain field on the populations of wave packets
of high-frequency phonons [12,18,29]. We found that this
model as presented in Ref. [12] does not reproduce the
strong frequency dependence observed and overestimates
the measured phonon lifetimes by at least one order of

FIG. 1 (color online). (a) Dispersion relation of a free-standing
silicon membrane, showing flexural (Fi) and dilatational (Di)
modes. The mode primarily excited by the pump pulse is the
first-order dilatational mode at zero parallel wave vector, D1

qk¼0.

(b) Schematic diagram of the displacement field of the excited
mode. The thickness of themembrane d oscillates with a period of
2d0=vL. The change in thickness is of the order of 1 pm and below,
with a corresponding change in reflectivity of the order of 10�5.

FIG. 2 (color online). Fractional change in reflectivity as a
function of time [�R=RðtÞ] for the 100 nm silicon membrane.
The sharp initial change in reflectivity is due to the electronic
response of the membrane. The subsequent weaker oscillations
are due to the excited acoustic modes. Inset: Close-up of
�R=RðtÞ due to the acoustic modes after subtraction of the
electronic response for membranes with 100 and 30 nm thick-
ness. The sinusoidal decay of the reflectivity due to the first-
order dilatational mode is clearly observed as a function of time,
with a faster decay observed for the thinner membrane. The time
trace of the 30 nm membrane has been magnified by a factor of
10 for clarity.
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magnitude (Fig. 3, dashed grey line). The other commonly
used approach to model intrinsic damping is a microscopic
formulation considering three-phonon interactions, where
the scattering probabilities are derived by applying first-
order perturbation theory to a harmonic potential. The
phonon-phonon scattering rates are generally derived
under the single-mode relaxation time approximation,
which assumes that during the decay of one phonon the
other phonons maintain an equilibrium distribution, or
equivalently, that the energy of the interacting phonon
@! is large compared to the uncertainty in energies of
the high-frequency phonons �@=�th due to their finite
lifetime �th, i.e., !�th � 1 [29]. Due to the great difficulty
in evaluating qualitatively the elements of the interaction
matrix, early pioneering works [30–33] made additional
heuristic considerations regarding energy conservation sur-
faces and temperature regimes to arrive at convenient
expressions of the frequency ! and temperature T depen-
dence of the phonon lifetimes. These expressions generally
take the form:

��1 ¼ BTn!m; (1)

where the parameters B, n, and m are dependent on the
temperature regime, polarizations of the interacting modes

and crystal symmetry, and may be either approximated
theoretically or empirically adjusted to fit experimental
data. Results of this expression are shown in Fig. 3, with
values BD ¼ 2:4� 10�19 s K�1, n ¼ 1, and m ¼ 2 as
used by Daly et al. [12] and Cahill et al. [34] for bulk
silicon, derived from a fit to thermal conductivity data
measured by thermoreflectance. In Ref. [12], it was found
that BD overestimated the measured bulk relaxation times.
The best fit to our experimental data is obtained for a value
of BEXP ¼ 5:7� 10�17 s K�1, two orders of magnitude
larger than BD, which raises doubts about the validity of
such an expression in our case. Moreover, the data clearly
show different trends in the studied frequency range.
Here, we calculate explicitly the intrinsic scattering

times under a Debye approximation, which we modify to
consider specifically the D1

qk¼0 mode. Details of these

calculations are provided in the Supplemental Material
[35]. Although the phonon cavity nature of the membrane
causes a discretization of the out-of-plane acoustic spec-
trum [23], the Debye approximation neglects changes in
the phonon density of states and therefore, this approxima-
tion can be expected to yield reasonable results for mem-
branes thicker than �30 nm at room temperature [36,37].
Notwithstanding the fact that this model does not include
the effects of optical phonon modes, the dispersion of the
bands for small wavelengths, or acoustic anisotropy, it
removes all adjustable parameters from the calculation
with only the mode-averaged Grüneisen parameter not
precisely known. As the D1

qk¼0 mode is purely longitudi-

nal, we can express the relaxation time for a phonon with
frequency undergoing a normal three-phonon process of
the type !L þ!0

s0 ! !00
s00 as [38]:

��1
3�phð!LÞ ¼ @vL

4�� �v2
�2

X
s0;s00

1

v2
s0v

2
s00

�
Z

!02
s0 ð!L þ!0

s0 Þ2
nð!0

s0 Þ½nð!00
s00 Þ þ 1�

nð!LÞ þ 1
d!;

(2)

where s is the mode polarization, n is the Bose-Einstein
distribution function, �v is the phonon average group ve-
locity and � is the mode-averaged Grüneisen parameter. In
bulk silicon, the mode-dependent Grüneisen parameter lies
in the range of 0.9–1.3 [39,40] for longitudinal modes. We
take a value of 1.08 for the mode-averaged value, which
has given the best fit to thermal conductivity data of Si
nanowires [41]. Decay processes of the type !L ! !0

s0 þ
!00

s00 are not represented in Eq. (2) as they are unlikely to

occur due to the low phonon energy and so have a negli-
gible contribution to the total relaxation time [39]. The
three-phonon interactions can be separated into those of
the type Lþ L ! L and Lþ T ! L, where L and T
represent longitudinal and transverse polarizations, respec-
tively. Collinear processes of the type Lþ L ! L are

FIG. 3 (color online). Phonon lifetime of the first-order dilata-
tional mode in free-standing silicon membranes as a function of
frequency. Experimental data of free-standing silicon mem-
branes with thickness values ranging from approximately 222
to 8 nm (black square [28], blue circles) and bulk silicon (red
triangles [12]). The red dashed lines show the contributions to the
finite phonon lifetime from normal three-phonon interactions
�3�ph and boundary scattering �b as indicated. The total contri-

bution, calculated using Matthiessens rule ��1
T ¼ ��1

3�ph þ ��1
b , is

shown by the solid red line labelled �T . Other models for intrinsic
(grey dotted line: Herring [12,30], grey dashed line: Akhiezer
[12,18]) and extrinsic (dotted-dashed grey line: Casimir limit
p ¼ 0) scattering processes are shown for reference. The top
axis showing thickness applies only to the experimental data
presented in this Letter and the extrinsic scattering processes.
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sometimes neglected due to the dispersion of the branches;
however, previous works have shown that these processes
may occur as the finite lifetime of the branches compen-
sates for the dispersion [40,42] and that they can play a
large role especially at short wave vector where the
dispersion relation is quasilinear. In fact, we find that
L ! Lþ L processes contribute most to the total intrinsic
phonon lifetime. The results of Eq. (2) are shown in Fig. 3
by the red dashed line labeled �3�ph. We observe that this

simplified theory yields the correct order of magnitude for
phonon lifetimes in thicker membranes. However, the
� / !�1 frequency dependence is different from that ex-
hibited by our experimental data for thinner membranes.
While discrepancies at frequencies of �100 GHz and
below could be related to uncertainties in the energies of
the high-frequency phonons compared to the interacting
phonon frequency, i.e., !�th 6�1, this relationship is
expected to be well within its range of validity at higher
frequencies. However, the experimental lifetimes are found
to be orders of magnitude shorter than predicted. To
explain these reduced lifetimes, we consider the impact
of the roughness of the membrane surface. We model this
effect following the approach of Ziman [43], where a
single phenomenological parameter p represents the ‘‘pol-
ish’’ or flatness of the surface. In this model, the change in
phase� of a wave reflected from the boundary is related to
the thickness profile of the surface as�ðxÞ ¼ 4�

� yðxÞwhere
yðxÞ is a continuous function representing the deviation of
the height of the surface from a reference plane. By con-
sidering the autocorrelation of the phase, we can derive the
wavelength-dependent specularity pð�Þ ¼ expð�� ��2Þ ¼
expð�16�3�2=�2Þ, where � is the root mean square de-
viation of the height of the surface from the reference
plane. This derivation is valid in the regime where the
width of a typical roughness feature is less than 4� times
the feature height, �. As the specularity depends on the
ratio of the wavelength to the surface roughness, shorter
wavelengths feel a stronger effect of the surface roughness
than longer wavelengths. After considering a series of
multiple reflections at the boundary, the mean free path

can be written as �¼1þp
1�p�0 where �0 is the characteristic

dimension of the structure, i.e., the membrane thickness d0
[43]. As a consequence, the lifetime due to boundary
roughness scattering is

�b ¼ �=vL ¼ d0
vL

1þ expð�16�3�3=�2Þ
1� expð�16�3�3=�2Þ

¼ d0
vL

coth

�
8�3�2

�2

�
� d0

!2

vL

2��2
: (3)

The results of this expression are shown in Fig. 3 (red
dashed line labelled �b) and are compared to the frequ-
ently used model considering a wavelength-independent
specularity [44], with the Casimir limit of p ¼ 0 [45],
shown by the grey dotted-dashed line. The experimental

trend in lifetime as a function of frequency for the
ultrathin (<30 nm) membranes is well-described by the
wavelength-dependent model with an estimated roughness
value of � ¼ 0:5 nm. We observe that the phonon lifetime
scales approximately as � / !�3 due to the frequency-
thickness relationship inherent to our sample set. We
note that the native oxide layer on both sides of the
membranes may introduce additional extrinsic scattering
at the boundaries and we have included this effect empiri-
cally in the roughness value �. A simple combination of
the lifetimes using Matthiessen’s rule ��1

T ¼ ��1
3�ph þ ��1

b

appears to fit the lifetimes over the frequency range inves-
tigated. The effects of long range thickness variations that
would lead to inhomogeneous broadening are considered
to be small due to the relatively small spot size and
homogeneity resulting from the well-controlled membrane
fabrication process, as explained in the Supplemental
Material [35].
By varying phonon populations and lifetimes, further

temperature-dependent measurements should help to dis-
tinguish between the different scattering mechanisms.
However, this Letter already provides much needed experi-
mental data on phonon lifetimes in nanoscale systems at
room temperature, for, e.g., direct use in the design of
nanomechanical oscillators and as input parameters for
calculations of thermal conductivity in nanoelectronics
and nanoscale thermoelectric materials. Furthermore,
future work should also shed light on the predicted tran-
sition between Landau-Rumer and Akhiezer damping as
the frequencies are in a suitable range [29,46].
To conclude, we have shown experimental measure-

ments of the relaxation times of coherent confined phonons
in ultrathin single-crystalline silicon membranes using
the ASOPS technique, free from interference with a sub-
strate or a deposited metal layer. The relaxation times
of the ultrathin membranes were found to be dominated
by boundary roughness scattering which was modelled
including a wavelength-dependent specularity. In the case
of thicker membranes, phonon-phonon interactions were
predicted to be the dominant scattering processes. The
latter processes were calculated explicitly with a theory
based upon three-phonon normal interactions, which gives
the correct order of magnitude. However, further theoreti-
cal work is required to include the finite lifetimes of the
high-frequency phonons in the three-phonon interaction
model. We suggest that this may account for the discrep-
ancies observed near 100 GHz and below where the
phonon period becomes comparable to the lifetime of
higher frequency phonons. Nevertheless, the preliminary
combination of these theories seems able to predict phonon
lifetimes in silicon membranes over several orders of
magnitude up to 1 THz.
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